These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 26398031)

  • 1. Coupled dam-break flow and bed load modelling using HLLC-WAF scheme.
    Hosseinzadeh-Tabrizi A; Ghaeini-Hessaroeyeh M
    Water Sci Technol; 2015; 72(7):1155-67. PubMed ID: 26398031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A two-dimensional coupled flow-mass transport model based on an improved unstructured finite volume algorithm.
    Zhou J; Song L; Kursan S; Liu Y
    Environ Res; 2015 May; 139():65-74. PubMed ID: 25686488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite-volume WENO scheme for viscous compressible multicomponent flows.
    Coralic V; Colonius T
    J Comput Phys; 2014 Oct; 274():95-121. PubMed ID: 25110358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the approximation of dam-break problems using a fuzzified HR-TVD scheme.
    Lochab R; Kumar V
    MethodsX; 2023; 10():102003. PubMed ID: 36684471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The piecewise parabolic method for Riemann problems in nonlinear elasticity.
    Zhang W; Wang T; Bai JS; Li P; Wan ZH; Sun DJ
    Sci Rep; 2017 Oct; 7(1):13497. PubMed ID: 29044142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of two-component pressure approach and Harten-Lax-van Leer (HLL) solver to model transient flow with regard to air entrapment.
    Ahadzadeh N; Tabesh M
    Water Sci Technol; 2020 Feb; 81(3):596-605. PubMed ID: 32385213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Central upwind scheme for a compressible two-phase flow model.
    Ahmed M; Saleem MR; Zia S; Qamar S
    PLoS One; 2015; 10(6):e0126273. PubMed ID: 26039242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three dimensional modelling of interaction between surface and Darcy flow regimes through soils.
    Kaveh-Baghbaderani B; Nassehi V; Kulkarni A
    Water Sci Technol; 2009; 60(7):1911-8. PubMed ID: 19809155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grid cell distortion and MODFLOW's integrated finite-difference numerical solution.
    Romero DM; Silver SE
    Ground Water; 2006; 44(6):797-802. PubMed ID: 17087751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A kinetic flux vector splitting scheme for shallow water equations incorporating variable bottom topography and horizontal temperature gradients.
    Saleem MR; Ashraf W; Zia S; Ali I; Qamar S
    PLoS One; 2018; 13(5):e0197500. PubMed ID: 29851978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity analysis for dose deposition in radiotherapy via a Fokker-Planck model.
    Barnard RC; Frank M; Krycki K
    Math Med Biol; 2017 Mar; 34(1):109-123. PubMed ID: 26861240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamic modelling of free water-surface constructed storm water wetlands using a finite volume technique.
    Zounemat-Kermani M; Scholz M; Tondar MM
    Environ Technol; 2015; 36(20):2532-47. PubMed ID: 25835065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On Dam-Break Flow Routing in Confluent Channels.
    Chen S; Li Y; Tian Z; Fan Q
    Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31717596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Level-set methods applied to the kinematic wave equation governing surface water flows.
    Mean S; Unami K; Fujihara M
    J Environ Manage; 2020 Sep; 269():110784. PubMed ID: 32561000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic and Sediment Responses of Open Channels to Exposed Pipe Encasements.
    Mao JQ; Zhang HQ; Dai HC; Yuan BH; Hu TF
    PLoS One; 2015; 10(11):e0143300. PubMed ID: 26588840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic characteristics of submerged vegetation flow with non-constant vertical porosity.
    Zhao M; Fan Z
    PLoS One; 2017; 12(4):e0176712. PubMed ID: 28448612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Central Upwind Scheme for Solving Special Relativistic Hydrodynamic Equations.
    Yousaf M; Ghaffar T; Qamar S
    PLoS One; 2015; 10(6):e0128698. PubMed ID: 26070067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental river delta size set by multiple floods and backwater hydrodynamics.
    Ganti V; Chadwick AJ; Hassenruck-Gudipati HJ; Fuller BM; Lamb MP
    Sci Adv; 2016 May; 2(5):e1501768. PubMed ID: 27386534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A semi-implicit finite element model for natural water bodies.
    Cunha Cde L; Rosman PC
    Water Res; 2005 May; 39(10):2034-47. PubMed ID: 15882888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of depth-averaged flow model using flat-bottomed benchmark problems.
    Seo IW; Kim YD; Song CG
    ScientificWorldJournal; 2014; 2014():197539. PubMed ID: 24982929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.