These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 26398037)
1. Removal of Cd(II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes. Kheriji J; Tabassi D; Hamrouni B Water Sci Technol; 2015; 72(7):1206-16. PubMed ID: 26398037 [TBL] [Abstract][Full Text] [Related]
2. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents. Turan M; Ates A; Inanc B Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123 [TBL] [Abstract][Full Text] [Related]
3. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes. Yüksel S; Kabay N; Yüksel M J Hazard Mater; 2013 Dec; 263 Pt 2():307-10. PubMed ID: 23731784 [TBL] [Abstract][Full Text] [Related]
4. Comparing the performance of various nanofiltration membranes in advanced oxidation-nanofiltration treatment of reverse osmosis concentrates. Li N; Wang X; Zhang H; Zhang Z; Ding J; Lu J Environ Sci Pollut Res Int; 2019 Jun; 26(17):17472-17481. PubMed ID: 31020525 [TBL] [Abstract][Full Text] [Related]
5. Membrane filtration for tertiary treatment of biologically treated effluents from the pulp and paper industry. Mänttäri M; Nyström M Water Sci Technol; 2007; 55(6):99-107. PubMed ID: 17486840 [TBL] [Abstract][Full Text] [Related]
6. Use of fouling resistant nanofiltration and reverse osmosis membranes for dyeing wastewater effluent treatment. Myung SW; Choi IH; Lee SH; Kim IC; Lee KH Water Sci Technol; 2005; 51(6-7):159-64. PubMed ID: 16003974 [TBL] [Abstract][Full Text] [Related]
7. Influence of residual organic macromolecules produced in biological wastewater treatment processes on removal of pharmaceuticals by NF/RO membranes. Kimura K; Iwase T; Kita S; Watanabe Y Water Res; 2009 Aug; 43(15):3751-8. PubMed ID: 19564034 [TBL] [Abstract][Full Text] [Related]
8. Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes. Nataraj SK; Hosamani KM; Aminabhavi TM Water Res; 2006 Jul; 40(12):2349-56. PubMed ID: 16757012 [TBL] [Abstract][Full Text] [Related]
9. Cyclophosphamide removal from water by nanofiltration and reverse osmosis membrane. Wang L; Albasi C; Faucet-Marquis V; Pfohl-Leszkowicz A; Dorandeu C; Marion B; Causserand C Water Res; 2009 Sep; 43(17):4115-22. PubMed ID: 19592068 [TBL] [Abstract][Full Text] [Related]
10. Efficiency of RO/NF membranes at the removal of veterinary antibiotics. Dolar D; Vuković A; Ašperger D; Košutić K Water Sci Technol; 2012; 65(2):317-23. PubMed ID: 22233911 [TBL] [Abstract][Full Text] [Related]
11. Factors affecting fluoride and natural organic matter (NOM) removal from natural waters in Tanzania by nanofiltration/reverse osmosis. Shen J; Schäfer AI Sci Total Environ; 2015 Sep; 527-528():520-9. PubMed ID: 26005995 [TBL] [Abstract][Full Text] [Related]
12. Separation of Cd and Ni from multicomponent aqueous solutions by nanofiltration and characterization of membrane using IT model. Chaudhari LB; Murthy ZV J Hazard Mater; 2010 Aug; 180(1-3):309-15. PubMed ID: 20452729 [TBL] [Abstract][Full Text] [Related]
13. Application of nanofiltration and reverse osmosis membranes to the salty and polluted surface water. Koyuncu I; Yazgan M J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001; 36(7):1321-33. PubMed ID: 11545356 [TBL] [Abstract][Full Text] [Related]
14. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes. Yoon J; Amy G; Chung J; Sohn J; Yoon Y Chemosphere; 2009 Sep; 77(2):228-35. PubMed ID: 19679331 [TBL] [Abstract][Full Text] [Related]
15. Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications. Xu P; Drewes JE; Bellona C; Amy G; Kim TU; Adam M; Heberer T Water Environ Res; 2005; 77(1):40-8. PubMed ID: 15765934 [TBL] [Abstract][Full Text] [Related]
16. Removal of natural hormone estrone from secondary effluents using nanofiltration and reverse osmosis. Jin X; Hu J; Ong SL Water Res; 2010 Jan; 44(2):638-48. PubMed ID: 19879623 [TBL] [Abstract][Full Text] [Related]
17. Efficiency enhancement of electrocoagulation, ion-exchange resin and reverse osmosis (RO) membrane filtration by prior organic precipitation for treatment of anaerobically-treated palm oil mill effluent. Khongkliang P; Nuchdang S; Rattanaphra D; Kingkam W; Mahathanabodee S; Boonnorat J; Kadier A; Aryanti PTP; Phalakornkule C Chemosphere; 2024 Sep; 363():142899. PubMed ID: 39029711 [TBL] [Abstract][Full Text] [Related]
18. Viability of a low-pressure nanofilter in treating recycled water for water reuse applications: a pilot-scale study. Bellona C; Drewes JE Water Res; 2007 Sep; 41(17):3948-58. PubMed ID: 17582458 [TBL] [Abstract][Full Text] [Related]
19. Membrane technology applied to acid mine drainage from copper mining. Ambiado K; Bustos C; Schwarz A; Bórquez R Water Sci Technol; 2017 Feb; 75(3-4):705-715. PubMed ID: 28192364 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of commercial nanofiltration and reverse osmosis membrane filtration to remove per-and polyfluoroalkyl substances (PFAS): Effects of transmembrane pressures and water matrices. Ma Q; Lei Q; Liu F; Song Z; Khusid B; Zhang W Water Environ Res; 2024 Feb; 96(2):e10983. PubMed ID: 38291820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]