These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 26398454)
1. In situ high-resolution evaluation of labile arsenic and mercury in sediment of a large shallow lake. Wang C; Yao Y; Wang P; Hou J; Qian J; Yuan Y; Fan X Sci Total Environ; 2016 Jan; 541():83-91. PubMed ID: 26398454 [TBL] [Abstract][Full Text] [Related]
2. In situ, high-resolution imaging of labile phosphorus in sediments of a large eutrophic lake. Ding S; Han C; Wang Y; Yao L; Wang Y; Xu D; Sun Q; Williams PN; Zhang C Water Res; 2015 May; 74():100-9. PubMed ID: 25720671 [TBL] [Abstract][Full Text] [Related]
3. Assessment of mobilization of labile phosphorus and iron across sediment-water interface in a shallow lake (Hongze) based on in situ high-resolution measurement. Yao Y; Wang P; Wang C; Hou J; Miao L; Yuan Y; Wang T; Liu C Environ Pollut; 2016 Dec; 219():873-882. PubMed ID: 27613325 [TBL] [Abstract][Full Text] [Related]
4. In-situ characterization and assessment of arsenic mobility in lake sediments. Sun Q; Ding S; Wang Y; Xu L; Wang D; Chen J; Zhang C Environ Pollut; 2016 Jul; 214():314-323. PubMed ID: 27107255 [TBL] [Abstract][Full Text] [Related]
5. Application of diffusive gradients in thin films and core centrifugation methods to determine inorganic mercury and monomethylmercury profiles in sediment porewater. Noh S; Hong YS; Han S Environ Toxicol Chem; 2016 Feb; 35(2):348-56. PubMed ID: 26250361 [TBL] [Abstract][Full Text] [Related]
6. High-resolution imaging of labile phosphorus and its relationship with iron redox state in lake sediments. Gao Y; Liang T; Tian S; Wang L; Holm PE; Bruun Hansen HC Environ Pollut; 2016 Dec; 219():466-474. PubMed ID: 27376987 [TBL] [Abstract][Full Text] [Related]
7. Mercury depth profiles in river and marine sediments measured by the diffusive gradients in thin films technique with two different specific resins. Divis P; Leermakers M; Docekalová H; Gao Y Anal Bioanal Chem; 2005 Aug; 382(7):1715-9. PubMed ID: 16021421 [TBL] [Abstract][Full Text] [Related]
8. Predicting net mercury methylation in sediments using diffusive gradient in thin films measurements. Clarisse O; Dimock B; Hintelmann H; Best EP Environ Sci Technol; 2011 Feb; 45(4):1506-12. PubMed ID: 21222459 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous measurements of arsenic and sulfide using diffusive gradients in thin films technique (DGT). Xu L; Sun Q; Ding S; Gong M; Zhang C Environ Geochem Health; 2018 Oct; 40(5):1919-1929. PubMed ID: 28477161 [TBL] [Abstract][Full Text] [Related]
10. Mercury speciation, bioavailability, and biomagnification in contaminated streams on the Savannah River Site (SC, USA). Xu X; Bryan AL; Mills GL; Korotasz AM Sci Total Environ; 2019 Jun; 668():261-270. PubMed ID: 30852203 [TBL] [Abstract][Full Text] [Related]
11. Mercury distribution in a typical shallow lake in northern China and its re-emission from sediment. Yang L; Zhang W; Ren M; Cao F; Chen F; Zhang Y; Shang L Ecotoxicol Environ Saf; 2020 Apr; 192():110316. PubMed ID: 32061981 [TBL] [Abstract][Full Text] [Related]
12. Mercury Distribution in the Deûle River (Northern France) Measured by the Diffusive Gradients in Thin Films Technique and Conventional Methods. Diviš P; Kadlecová M; Ouddane B Arch Environ Contam Toxicol; 2016 May; 70(4):700-9. PubMed ID: 26428003 [TBL] [Abstract][Full Text] [Related]
13. [In Situ High-Resolution Analysis of Labile Phosphorus in Sediments of Lake Chaohu]. Li C; Wang D; Yang JY; Wang Y; Ding SM Huan Jing Ke Xue; 2015 Jun; 36(6):2077-84. PubMed ID: 26387310 [TBL] [Abstract][Full Text] [Related]
14. Assessment of mercury bioavailability to benthic macroinvertebrates using diffusive gradients in thin films (DGT). Amirbahman A; Massey DI; Lotufo G; Steenhaut N; Brown LE; Biedenbach JM; Magar VS Environ Sci Process Impacts; 2013 Oct; 15(11):2104-14. PubMed ID: 24084872 [TBL] [Abstract][Full Text] [Related]
15. Determination of mercury in river water by diffusive gradients in thin films using P81 membrane as binding layer. Colaço CD; Yabuki LN; Rolisola AM; Menegário AA; de Almeida E; Suárez CA; Gao Y; Corns WT; do Nascimento Filho VF Talanta; 2014 Nov; 129():417-21. PubMed ID: 25127614 [TBL] [Abstract][Full Text] [Related]
16. Water-level fluctuations regulate the availability and diffusion kinetics process of phosphorus at lake water-sediment interface. Yuan H; Wang H; Zhou Y; Jia B; Yu J; Cai Y; Yang Z; Liu E; Li Q; Yin H Water Res; 2021 Jul; 200():117258. PubMed ID: 34058482 [TBL] [Abstract][Full Text] [Related]
17. Long-term effectiveness of sediment dredging on controlling the contamination of arsenic, selenium, and antimony. Sun Q; Ding S; Chen M; Gao S; Lu G; Wu Y; Gong M; Wang D; Wang Y Environ Pollut; 2019 Feb; 245():725-734. PubMed ID: 30500752 [TBL] [Abstract][Full Text] [Related]
18. In situ, high resolution ZrO-Chelex DGT for the investigation of iron-coupled inactivation of arsenic in sediments by macrozoobenthos bioturbation and hydrodynamic interactions. Yao Y; Wang C; Wang P; Hou J; Wang T; Liu C; Yuan Y Sci Total Environ; 2016 Aug; 562():451-462. PubMed ID: 27107269 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of phosphorus release from sediments and its relationship with iron speciation influenced by the mussel (Corbicula fluminea) bioturbation. Chen M; Ding S; Liu L; Xu D; Gong M; Tang H; Zhang C Sci Total Environ; 2016 Jan; 542(Pt A):833-40. PubMed ID: 26556747 [TBL] [Abstract][Full Text] [Related]
20. In situ arsenic speciation at the soil/water interface of saline-alkaline lakes of the Pantanal, Brazil: A DGT-based approach. Viana JLM; Souza AF; Hernández AH; Elias LP; Eismann CE; Rezende-Filho AT; Barbiero L; Menegario AA; Fostier AH Sci Total Environ; 2022 Jan; 804():150113. PubMed ID: 34520925 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]