These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 26398668)
1. Comparison of biomass and lipid production under ambient carbon dioxide vigorous aeration and 3% carbon dioxide condition among the lead candidate Chlorella strains screened by various photobioreactor scales. Kobayashi N; Barnes A; Jensen T; Noel E; Andlay G; Rosenberg JN; Betenbaugh MJ; Guarnieri MT; Oyler GA Bioresour Technol; 2015 Dec; 198():246-55. PubMed ID: 26398668 [TBL] [Abstract][Full Text] [Related]
2. Enhanced lipid accumulation of photoautotrophic microalgae by high-dose CO2 mimics a heterotrophic characterization. Sun Z; Dou X; Wu J; He B; Wang Y; Chen YF World J Microbiol Biotechnol; 2016 Jan; 32(1):9. PubMed ID: 26712624 [TBL] [Abstract][Full Text] [Related]
3. Elevated CO2 concentration impacts cell wall polysaccharide composition of green microalgae of the genus Chlorella. Cheng YS; Labavitch JM; VanderGheynst JS Lett Appl Microbiol; 2015 Jan; 60(1):1-7. PubMed ID: 25163669 [TBL] [Abstract][Full Text] [Related]
4. Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the Microalga C. sorokiniana. Rosenberg JN; Kobayashi N; Barnes A; Noel EA; Betenbaugh MJ; Oyler GA PLoS One; 2014; 9(4):e92460. PubMed ID: 24699196 [TBL] [Abstract][Full Text] [Related]
5. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Chiu SY; Kao CY; Chen CH; Kuan TC; Ong SC; Lin CS Bioresour Technol; 2008 Jun; 99(9):3389-96. PubMed ID: 17904359 [TBL] [Abstract][Full Text] [Related]
6. Production of Chlorella vulgaris as a source of essential fatty acids in a tubular photobioreactor continuously fed with air enriched with CO2 at different concentrations. Ortiz Montoya EY; Casazza AA; Aliakbarian B; Perego P; Converti A; de Carvalho JC Biotechnol Prog; 2014; 30(4):916-22. PubMed ID: 24532479 [TBL] [Abstract][Full Text] [Related]
7. Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Farooq W; Lee YC; Ryu BG; Kim BH; Kim HS; Choi YE; Yang JW Bioresour Technol; 2013 Mar; 132():230-8. PubMed ID: 23411453 [TBL] [Abstract][Full Text] [Related]
8. Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids. Wang Y; Rischer H; Eriksen NT; Wiebe MG Bioresour Technol; 2013 Sep; 144():608-14. PubMed ID: 23907064 [TBL] [Abstract][Full Text] [Related]
9. [Effect of inorganic carbon source on lipid production with autotrophic Chlorella vulgaris]. Zheng H; Gao Z; Zhang Q; Huang H; Ji X; Sun H; Dou C Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):436-44. PubMed ID: 21650025 [TBL] [Abstract][Full Text] [Related]
10. A novel flat-panel photobioreactor for simultaneous production of lutein and carbon sequestration by Chlorella sorokiniana TH01. Van T Do C; Dinh CT; Dang MT; Dang Tran T; Giang Le T Bioresour Technol; 2022 Feb; 345():126552. PubMed ID: 34906709 [TBL] [Abstract][Full Text] [Related]
11. Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana. Kumar K; Banerjee D; Das D Bioresour Technol; 2014; 152():225-33. PubMed ID: 24292202 [TBL] [Abstract][Full Text] [Related]
12. The impact of elevated CO2 concentration on the quality of algal starch as a potential biofuel feedstock. Tanadul OU; VanderGheynst JS; Beckles DM; Powell AL; Labavitch JM Biotechnol Bioeng; 2014 Jul; 111(7):1323-31. PubMed ID: 24474069 [TBL] [Abstract][Full Text] [Related]
13. Characterization of Chlorella sorokiniana growth properties in monosaccharide-supplemented batch culture. Chai S; Shi J; Huang T; Guo Y; Wei J; Guo M; Li L; Dou S; Liu L; Liu G PLoS One; 2018; 13(7):e0199873. PubMed ID: 29969497 [TBL] [Abstract][Full Text] [Related]
14. Significance evaluation of the effects of environmental factors on the lipid accumulation of Chlorella minutissima UTEX 2341 under low-nutrition heterotrophic condition. Cao J; Yuan H; Li B; Yang J Bioresour Technol; 2014; 152():177-84. PubMed ID: 24291318 [TBL] [Abstract][Full Text] [Related]
15. Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor. Blanken W; Janssen M; Cuaresma M; Libor Z; Bhaiji T; Wijffels RH Biotechnol Bioeng; 2014 Dec; 111(12):2436-45. PubMed ID: 24895246 [TBL] [Abstract][Full Text] [Related]
16. Photoautotrophic production of lipids by some Chlorella strains. Sirisansaneeyakul S; Singhasuwan S; Choorit W; Phoopat N; Garcia JL; Chisti Y Mar Biotechnol (NY); 2011 Oct; 13(5):928-41. PubMed ID: 21222135 [TBL] [Abstract][Full Text] [Related]
17. Dual-mode cultivation of Chlorella protothecoides applying inter-reactors gas transfer improves microalgae biodiesel production. Santos CA; Nobre B; Lopes da Silva T; Pinheiro HM; Reis A J Biotechnol; 2014 Aug; 184():74-83. PubMed ID: 24862195 [TBL] [Abstract][Full Text] [Related]
18. Bubble column photobioreactor (BCPR) for cultivating microalgae and microalgal consortium (Co-CC) with additional CO Mathivanan K; Ameen F; Zhang R; Ravi G; Beduru S Environ Res; 2023 Dec; 238(Pt 2):117284. PubMed ID: 37793593 [TBL] [Abstract][Full Text] [Related]
19. Biomass and lipid production of a local isolate Chlorella sorokiniana under mixotrophic growth conditions. Juntila DJ; Bautista MA; Monotilla W Bioresour Technol; 2015 Sep; 191():395-8. PubMed ID: 25847795 [TBL] [Abstract][Full Text] [Related]
20. Elevated CO2 improves lipid accumulation by increasing carbon metabolism in Chlorella sorokiniana. Sun Z; Chen YF; Du J Plant Biotechnol J; 2016 Feb; 14(2):557-66. PubMed ID: 25973988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]