These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 26399302)
1. Rationale of the effects from dopants on C-H bond activation for sp(2) hybridized nanostructured carbon catalysts. Mao S; Sun X; Li B; Su DS Nanoscale; 2015 Oct; 7(40):16597-600. PubMed ID: 26399302 [TBL] [Abstract][Full Text] [Related]
2. Oxidative dehydrogenation reaction of short alkanes on nanostructured carbon catalysts: a computational account. Sun X; Han P; Li B; Mao S; Liu T; Ali S; Lian Z; Su D Chem Commun (Camb); 2018 Jan; 54(8):864-875. PubMed ID: 29322143 [TBL] [Abstract][Full Text] [Related]
3. Designing graphene as a new frustrated Lewis pair catalyst for hydrogen activation by co-doping. Sun X; Li B; Liu T; Song J; Su DS Phys Chem Chem Phys; 2016 Apr; 18(16):11120-4. PubMed ID: 27048882 [TBL] [Abstract][Full Text] [Related]
4. The Unexpected Reactivity of the Carbon Sites on the Nanostructured Carbon Catalysts towards the C-H Bond Activation from the Analysis of the Aromaticity. Sun X; Li B; Su D Chem Asian J; 2016 Jun; 11(11):1668-71. PubMed ID: 27062419 [TBL] [Abstract][Full Text] [Related]
5. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Wu G; Zelenay P Acc Chem Res; 2013 Aug; 46(8):1878-89. PubMed ID: 23815084 [TBL] [Abstract][Full Text] [Related]
6. Understanding the Effects of Bidentate Directing Groups: A Unified Rationale for sp(2) and sp(3) C-H Bond Activations. Tang H; Huang XR; Yao J; Chen H J Org Chem; 2015 May; 80(9):4672-82. PubMed ID: 25836059 [TBL] [Abstract][Full Text] [Related]
7. Isoelectronic doping of graphdiyne with boron and nitrogen: stable configurations and band gap modification. Bu H; Zhao M; Zhang H; Wang X; Xi Y; Wang Z J Phys Chem A; 2012 Apr; 116(15):3934-9. PubMed ID: 22435915 [TBL] [Abstract][Full Text] [Related]
8. Anomalous doping effect in black phosphorene using first-principles calculations. Yu W; Zhu Z; Niu CY; Li C; Cho JH; Jia Y Phys Chem Chem Phys; 2015 Jul; 17(25):16351-8. PubMed ID: 26051654 [TBL] [Abstract][Full Text] [Related]
9. Exploration of earth-abundant transition metals (Fe, Co, and Ni) as catalysts in unreactive chemical bond activations. Su B; Cao ZC; Shi ZJ Acc Chem Res; 2015 Mar; 48(3):886-96. PubMed ID: 25679917 [TBL] [Abstract][Full Text] [Related]
14. First-principles analysis of the C-N bond scission of methylamine on Mo-based model catalysts. Lv CQ; Li J; Tao SX; Ling KC; Wang GC J Chem Phys; 2010 Jan; 132(4):044111. PubMed ID: 20113023 [TBL] [Abstract][Full Text] [Related]
15. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. Choi CH; Park SH; Woo SI ACS Nano; 2012 Aug; 6(8):7084-91. PubMed ID: 22769428 [TBL] [Abstract][Full Text] [Related]
16. Rules of boron-nitrogen doping in defect graphene sheets: a first-principles investigation of band-gap tuning and oxygen reduction reaction catalysis capabilities. Sen D; Thapa R; Chattopadhyay KK Chemphyschem; 2014 Aug; 15(12):2542-9. PubMed ID: 24910355 [TBL] [Abstract][Full Text] [Related]
18. Graphene substrate-mediated catalytic performance enhancement of Ru nanoparticles: a first-principles study. Liu X; Yao KX; Meng C; Han Y Dalton Trans; 2012 Jan; 41(4):1289-96. PubMed ID: 22134739 [TBL] [Abstract][Full Text] [Related]
19. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery. Park YJ; Park JW; Jun CH Acc Chem Res; 2008 Feb; 41(2):222-34. PubMed ID: 18247521 [TBL] [Abstract][Full Text] [Related]
20. Interface Energetics and Charge Carrier Density Amplification by Sn-Doping in LaAlO3/SrTiO3 Heterostructure. Nazir S; Cheng J; Behtash M; Luo J; Yang K ACS Appl Mater Interfaces; 2015 Jul; 7(26):14294-302. PubMed ID: 26062403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]