These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26399323)

  • 1. Griffiths phases and localization in hierarchical modular networks.
    Ódor G; Dickman R; Ódor G
    Sci Rep; 2015 Sep; 5():14451. PubMed ID: 26399323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rare regions of the susceptible-infected-susceptible model on Barabási-Albert networks.
    Ódor G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042132. PubMed ID: 23679396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Griffiths phase on hierarchical modular networks with small-world edges.
    Li S
    Phys Rev E; 2017 Mar; 95(3-1):032306. PubMed ID: 28415342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Griffiths phases in infinite-dimensional, non-hierarchical modular networks.
    Cota W; Ódor G; Ferreira SC
    Sci Rep; 2018 Jun; 8(1):9144. PubMed ID: 29904065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Griffiths phases on complex networks.
    Muñoz MA; Juhász R; Castellano C; Odor G
    Phys Rev Lett; 2010 Sep; 105(12):128701. PubMed ID: 20867681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral analysis and slow spreading dynamics on complex networks.
    Odor G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032109. PubMed ID: 24125216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow, bursty dynamics as a consequence of quenched network topologies.
    Ódor G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042102. PubMed ID: 24827188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rare-region effects in the contact process on networks.
    Juhász R; Ódor G; Castellano C; Muñoz MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066125. PubMed ID: 23005180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonuniversal power-law dynamics of susceptible infected recovered models on hierarchical modular networks.
    Ódor G
    Phys Rev E; 2021 Jun; 103(6-1):062112. PubMed ID: 34271752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Griffiths effects of the susceptible-infected-susceptible epidemic model on random power-law networks.
    Cota W; Ferreira SC; Ódor G
    Phys Rev E; 2016 Mar; 93(3):032322. PubMed ID: 27078381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical network structure as the source of hierarchical dynamics (power-law frequency spectra) in living and non-living systems: How state-trait continua (body plans, personalities) emerge from first principles in biophysics.
    Goekoop R; de Kleijn R
    Neurosci Biobehav Rev; 2023 Nov; 154():105402. PubMed ID: 37741517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High prevalence regimes in the pair-quenched mean-field theory for the susceptible-infected-susceptible model on networks.
    Silva DH; Rodrigues FA; Ferreira SC
    Phys Rev E; 2020 Jul; 102(1-1):012313. PubMed ID: 32795004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization transition, Lifschitz tails, and rare-region effects in network models.
    Ódor G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032110. PubMed ID: 25314398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Griffiths phases and the stretching of criticality in brain networks.
    Moretti P; Muñoz MA
    Nat Commun; 2013; 4():2521. PubMed ID: 24088740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relation between structural and functional connectivity patterns in complex brain networks.
    Stam CJ; van Straaten EC; Van Dellen E; Tewarie P; Gong G; Hillebrand A; Meier J; Van Mieghem P
    Int J Psychophysiol; 2016 May; 103():149-60. PubMed ID: 25678023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed percolation in random temporal network models with heterogeneities.
    Badie-Modiri A; Rizi AK; Karsai M; Kivelä M
    Phys Rev E; 2022 May; 105(5-1):054313. PubMed ID: 35706217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Internet-like brain hierarchical network model: Alzheimer's disease study as an example.
    Huang S; Zeng W; Shi Y
    Comput Methods Programs Biomed; 2021 Nov; 211():106393. PubMed ID: 34551380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graph Analysis and Modularity of Brain Functional Connectivity Networks: Searching for the Optimal Threshold.
    Bordier C; Nicolini C; Bifone A
    Front Neurosci; 2017; 11():441. PubMed ID: 28824364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Latching chains in K-nearest-neighbor and modular small-world networks.
    Song S; Yao H; Simonov AY
    Network; 2015; 26(1):1-24. PubMed ID: 25387273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered topological organization of resting-state functional networks in children with infantile spasms.
    Wang Y; Li Y; Yang L; Huang W
    Front Neurosci; 2022; 16():952940. PubMed ID: 36248635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.