BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 26399324)

  • 21. Optogenetic approaches for investigating neural pathways implicated in schizophrenia and related disorders.
    Cho KK; Sohal VS
    Hum Mol Genet; 2014 Sep; 23(R1):R64-8. PubMed ID: 24824218
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An efficient cell type specific conjugating method for incorporating various nanostructures to genetically encoded AviTag expressed optogenetic opsins.
    Bang Y; Kim YY; Song YK
    Biochem Biophys Res Commun; 2020 Sep; 530(3):581-587. PubMed ID: 32753317
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An optogenetic approach in epilepsy.
    Kokaia M; Andersson M; Ledri M
    Neuropharmacology; 2013 Jun; 69():89-95. PubMed ID: 22698957
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A calibrated optogenetic toolbox of stable zebrafish opsin lines.
    Antinucci P; Dumitrescu A; Deleuze C; Morley HJ; Leung K; Hagley T; Kubo F; Baier H; Bianco IH; Wyart C
    Elife; 2020 Mar; 9():. PubMed ID: 32216873
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using a bistable animal opsin for switchable and scalable optogenetic inhibition of neurons.
    Rodgers J; Bano-Otalora B; Belle MDC; Paul S; Hughes R; Wright P; McDowell R; Milosavljevic N; Orlowska-Feuer P; Martial FP; Wynne J; Ballister ER; Storchi R; Allen AE; Brown T; Lucas RJ
    EMBO Rep; 2021 May; 22(5):e51866. PubMed ID: 33655694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor.
    Paonessa F; Criscuolo S; Sacchetti S; Amoroso D; Scarongella H; Pecoraro Bisogni F; Carminati E; Pruzzo G; Maragliano L; Cesca F; Benfenati F
    Proc Natl Acad Sci U S A; 2016 Jan; 113(1):E91-100. PubMed ID: 26699507
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An optogenetic toolbox designed for primates.
    Diester I; Kaufman MT; Mogri M; Pashaie R; Goo W; Yizhar O; Ramakrishnan C; Deisseroth K; Shenoy KV
    Nat Neurosci; 2011 Mar; 14(3):387-97. PubMed ID: 21278729
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diversity of animal opsin-based pigments and their optogenetic potential.
    Koyanagi M; Terakita A
    Biochim Biophys Acta; 2014 May; 1837(5):710-6. PubMed ID: 24041647
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Broad-Band Activatable White-Opsin.
    Batabyal S; Cervenka G; Ha JH; Kim YT; Mohanty S
    PLoS One; 2015; 10(9):e0136958. PubMed ID: 26360377
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Broad spectral excitation of opsin for enhanced stimulation of cells.
    Satpathy S; Batabyal S; Dhakal KR; Lin J; Kim YT; Mohanty SK
    Opt Lett; 2015 Jun; 40(11):2465-8. PubMed ID: 26030533
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Zebrafish as an appealing model for optogenetic studies.
    Simmich J; Staykov E; Scott E
    Prog Brain Res; 2012; 196():145-62. PubMed ID: 22341325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overview on Research and Clinical Applications of Optogenetics.
    Towne C; Thompson KR
    Curr Protoc Pharmacol; 2016 Dec; 75():11.19.1-11.19.21. PubMed ID: 27960028
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The optogenetic (r)evolution.
    Rein ML; Deussing JM
    Mol Genet Genomics; 2012 Feb; 287(2):95-109. PubMed ID: 22183142
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo optogenetic stimulation of the rodent central nervous system.
    Sidor MM; Davidson TJ; Tye KM; Warden MR; Diesseroth K; McClung CA
    J Vis Exp; 2015 Jan; (95):51483. PubMed ID: 25651158
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeted expression of step-function opsins in transgenic rats for optogenetic studies.
    Igarashi H; Ikeda K; Onimaru H; Kaneko R; Koizumi K; Beppu K; Nishizawa K; Takahashi Y; Kato F; Matsui K; Kobayashi K; Yanagawa Y; Muramatsu SI; Ishizuka T; Yawo H
    Sci Rep; 2018 Apr; 8(1):5435. PubMed ID: 29615713
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The BioLuminescent-OptoGenetic in vivo response to coelenterazine is proportional, sensitive, and specific in neocortex.
    Gomez-Ramirez M; More AI; Friedman NG; Hochgeschwender U; Moore CI
    J Neurosci Res; 2020 Mar; 98(3):471-480. PubMed ID: 31544973
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of discontinuous blue light stimulation on the electrophysiological properties of neurons lacking opsin expression in vitro: Implications for optogenetic experiments.
    Lightning A; Bourzeix M; Beurrier C; Kuczewski N
    Eur J Neurosci; 2023 Mar; 57(6):885-899. PubMed ID: 36726326
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation.
    Prakash R; Yizhar O; Grewe B; Ramakrishnan C; Wang N; Goshen I; Packer AM; Peterka DS; Yuste R; Schnitzer MJ; Deisseroth K
    Nat Methods; 2012 Dec; 9(12):1171-9. PubMed ID: 23169303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice.
    Iyer SM; Montgomery KL; Towne C; Lee SY; Ramakrishnan C; Deisseroth K; Delp SL
    Nat Biotechnol; 2014 Mar; 32(3):274-8. PubMed ID: 24531797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.