BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 26399411)

  • 1. SdhE-dependent formation of a functional Acetobacter pasteurianus succinate dehydrogenase in Gluconobacter oxydans--a first step toward a complete tricarboxylic acid cycle.
    Kiefler I; Bringer S; Bott M
    Appl Microbiol Biotechnol; 2015 Nov; 99(21):9147-60. PubMed ID: 26399411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of Gluconobacter oxydans 621H for increased biomass yield.
    Kiefler I; Bringer S; Bott M
    Appl Microbiol Biotechnol; 2017 Jul; 101(13):5453-5467. PubMed ID: 28484812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The conserved RGxxE motif of the bacterial FAD assembly factor SdhE is required for succinate dehydrogenase flavinylation and activity.
    McNeil MB; Fineran PC
    Biochemistry; 2013 Oct; 52(43):7628-40. PubMed ID: 24070374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The succinate dehydrogenase assembly factor, SdhE, is required for the flavinylation and activation of fumarate reductase in bacteria.
    McNeil MB; Hampton HG; Hards KJ; Watson BN; Cook GM; Fineran PC
    FEBS Lett; 2014 Jan; 588(3):414-21. PubMed ID: 24374335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Auxiliary NADH Dehydrogenase Plays a Crucial Role in Redox Homeostasis of Nicotinamide Cofactors in the Absence of the Periplasmic Oxidation System in Gluconobacter oxydans NBRC3293.
    Sriherfyna FH; Matsutani M; Hirano K; Koike H; Kataoka N; Yamashita T; Nakamaru-Ogiso E; Matsushita K; Yakushi T
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127815
    [No Abstract]   [Full Text] [Related]  

  • 6. Quantification of the expression of reference and alcohol dehydrogenase genes of some acetic acid bacteria in different growth conditions.
    Quintero Y; Poblet M; Guillamón JM; Mas A
    J Appl Microbiol; 2009 Feb; 106(2):666-74. PubMed ID: 19200331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. YgfX (CptA) is a multimeric membrane protein that interacts with the succinate dehydrogenase assembly factor SdhE (YgfY).
    McNeil MB; Iglesias-Cans MC; Clulow JS; Fineran PC
    Microbiology (Reading); 2013 Jul; 159(Pt 7):1352-1365. PubMed ID: 23657679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a novel promoter gHp0169 for gene expression in Gluconobacter oxydans.
    Shi L; Li K; Zhang H; Liu X; Lin J; Wei D
    J Biotechnol; 2014 Apr; 175():69-74. PubMed ID: 24530540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H.
    Hölscher T; Görisch H
    J Bacteriol; 2006 Nov; 188(21):7668-76. PubMed ID: 16936032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of cell growth and glycolic acid production by overexpression of membrane-bound alcohol dehydrogenase in Gluconobacter oxydans DSM 2003.
    Zhang H; Shi L; Mao X; Lin J; Wei D
    J Biotechnol; 2016 Nov; 237():18-24. PubMed ID: 27619641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revealing in vivo glucose utilization of Gluconobacter oxydans 621H Δmgdh strain by mutagenesis.
    Wei L; Zhu D; Zhou J; Zhang J; Zhu K; Du L; Hua Q
    Microbiol Res; 2014; 169(5-6):469-75. PubMed ID: 24035043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of membrane-bound dehydrogenases of Gluconobacter oxydans 621H using a new system for their functional expression.
    Mientus M; Kostner D; Peters B; Liebl W; Ehrenreich A
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3189-3200. PubMed ID: 28064365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans.
    Meyer M; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3457-66. PubMed ID: 22790543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of L-Erythrose by Assembly of Two Key Enzymes in Gluconobacter oxydans.
    Zou X; Lin J; Mao X; Zhao S; Ren Y
    J Agric Food Chem; 2017 Sep; 65(35):7721-7725. PubMed ID: 28707464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global mRNA decay and 23S rRNA fragmentation in Gluconobacter oxydans 621H.
    Kranz A; Steinmann A; Degner U; Mengus-Kaya A; Matamouros S; Bott M; Polen T
    BMC Genomics; 2018 Oct; 19(1):753. PubMed ID: 30326828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutational analysis of the pentose phosphate and Entner-Doudoroff pathways in Gluconobacter oxydans reveals improved growth of a Δedd Δeda mutant on mannitol.
    Richhardt J; Bringer S; Bott M
    Appl Environ Microbiol; 2012 Oct; 78(19):6975-86. PubMed ID: 22843527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans.
    Li K; Mao X; Liu L; Lin J; Sun M; Wei D; Yang S
    Microb Cell Fact; 2016 Jul; 15(1):121. PubMed ID: 27392695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The consequence of an additional NADH dehydrogenase paralog on the growth of Gluconobacter oxydans DSM3504.
    Kostner D; Luchterhand B; Junker A; Volland S; Daniel R; Büchs J; Liebl W; Ehrenreich A
    Appl Microbiol Biotechnol; 2015 Jan; 99(1):375-86. PubMed ID: 25267158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic analysis of D-xylose metabolism pathways in Gluconobacter oxydans 621H.
    Zhang M; Wei L; Zhou Y; Du L; Imanaka T; Hua Q
    J Ind Microbiol Biotechnol; 2013 Apr; 40(3-4):379-88. PubMed ID: 23381123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of D-Lactate as an Energy Source Supports the Growth of Gluconobacter oxydans.
    Sheng B; Xu J; Zhang Y; Jiang T; Deng S; Kong J; Gao C; Ma C; Xu P
    Appl Environ Microbiol; 2015 Jun; 81(12):4098-110. PubMed ID: 25862219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.