These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 26399425)

  • 41. Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators.
    Lu H; Liu X; Mao D; Wang G
    Opt Lett; 2012 Sep; 37(18):3780-2. PubMed ID: 23041857
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multiple Fano-Like MIM Plasmonic Structure Based on Triangular Resonator for Refractive Index Sensing.
    Jankovic N; Cselyuszka N
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29351186
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optical-fibre characteristics based on Fano resonances and sensor application in blood glucose detection.
    Zhu J; Yin J
    Opt Express; 2022 Jul; 30(15):26749-26760. PubMed ID: 36236861
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Narrow plasmonic surface lattice resonances with preference to asymmetric dielectric environment.
    Yang X; Xiao G; Lu Y; Li G
    Opt Express; 2019 Sep; 27(18):25384-25394. PubMed ID: 31510411
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators.
    Gu P; Wan M; Wu W; Chen Z; Wang Z
    Nanoscale; 2016 May; 8(19):10358-63. PubMed ID: 27139034
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High Sensitivity Plasmonic Sensor Based on Fano Resonance with Inverted U-Shaped Resonator.
    Xiao G; Xu Y; Yang H; Ou Z; Chen J; Li H; Liu X; Zeng L; Li J
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562255
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multiple Sharp Fano Resonances in a Deep-Subwavelength Spherical Hyperbolic Metamaterial Cavity.
    Gu P; Guo Y; Chen J; Zhang Z; Yan Z; Liu F; Tang C; Du W; Chen Z
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578616
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dual narrow-band absorber based on metal-insulator-metal configuration for refractive index sensing.
    Chen C; Wang G; Zhang Z; Zhang K
    Opt Lett; 2018 Aug; 43(15):3630-3633. PubMed ID: 30067641
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-sensitivity plasmonic sensor by narrowing Fano resonances in a tilted metallic nano-groove array.
    Jia S; Li Z; Chen J
    Opt Express; 2021 Jul; 29(14):21358-21368. PubMed ID: 34265925
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide.
    Zhan S; Peng Y; He Z; Li B; Chen Z; Xu H; Li H
    Sci Rep; 2016 Mar; 6():22428. PubMed ID: 26932299
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tunable plasmonic resonances based on elliptical annular aperture arrays on conducting substrates for advanced biosensing.
    Liang Y; Peng W; Li L; Qian S; Wang Q
    Opt Lett; 2015 Aug; 40(16):3909-12. PubMed ID: 26274691
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Self-reference plasmonic sensors based on double Fano resonances.
    Wang Y; Sun C; Li H; Gong Q; Chen J
    Nanoscale; 2017 Aug; 9(31):11085-11092. PubMed ID: 28741643
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High Quality Plasmonic Sensors Based on Fano Resonances Created through Cascading Double Asymmetric Cavities.
    Zhang X; Shao M; Zeng X
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27763539
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highly Sensitive Refractive Index Sensors with Plasmonic Nanoantennas-Utilization of Optimal Spectral Detuning of Fano Resonances.
    Mesch M; Weiss T; Schäferling M; Hentschel M; Hegde RS; Giessen H
    ACS Sens; 2018 May; 3(5):960-966. PubMed ID: 29708330
    [TBL] [Abstract][Full Text] [Related]  

  • 55. From localized to delocalized plasmonic modes, first observation of superradiant scattering in disordered semi-continuous metal films.
    Berthelot A; des Francs GC; Varguet H; Margueritat J; Mascart R; Benoit JM; Laverdant J
    Nanotechnology; 2019 Jan; 30(1):015706. PubMed ID: 30370901
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Switching plasmonic Fano resonance in gold nanosphere-nanoplate heterodimers.
    Lu W; Cui X; Chow TH; Shao L; Wang H; Chen H; Wang J
    Nanoscale; 2019 May; 11(19):9641-9653. PubMed ID: 31065663
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures.
    Fu YH; Zhang JB; Yu YF; Luk'yanchuk B
    ACS Nano; 2012 Jun; 6(6):5130-7. PubMed ID: 22577794
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fano resonances in plasmonic nanoparticle aggregates.
    Mirin NA; Bao K; Nordlander P
    J Phys Chem A; 2009 Apr; 113(16):4028-34. PubMed ID: 19371111
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles.
    Bakhti S; Tishchenko AV; Zambrana-Puyalto X; Bonod N; Dhuey SD; Schuck PJ; Cabrini S; Alayoglu S; Destouches N
    Sci Rep; 2016 Sep; 6():32061. PubMed ID: 27580515
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tunable compact nanosensor based on Fano resonance in a plasmonic waveguide system.
    Ren X; Ren K; Cai Y
    Appl Opt; 2017 Nov; 56(31):H1-H9. PubMed ID: 29091660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.