These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 26399504)

  • 1. Konnector v2.0: pseudo-long reads from paired-end sequencing data.
    Vandervalk BP; Yang C; Xue Z; Raghavan K; Chu J; Mohamadi H; Jackman SD; Chiu R; Warren RL; Birol I
    BMC Med Genomics; 2015; 8 Suppl 3(Suppl 3):S1. PubMed ID: 26399504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BASE: a practical de novo assembler for large genomes using long NGS reads.
    Liu B; Liu CM; Li D; Li Y; Ting HF; Yiu SM; Luo R; Lam TW
    BMC Genomics; 2016 Aug; 17 Suppl 5(Suppl 5):499. PubMed ID: 27586129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RResolver: efficient short-read repeat resolution within ABySS.
    Nikolić V; Afshinfard A; Chu J; Wong J; Coombe L; Nip KM; Warren RL; Birol I
    BMC Bioinformatics; 2022 Jun; 23(1):246. PubMed ID: 35729491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudo-Sanger sequencing: massively parallel production of long and near error-free reads using NGS technology.
    Ruan J; Jiang L; Chong Z; Gong Q; Li H; Li C; Tao Y; Zheng C; Zhai W; Turissini D; Cannon CH; Lu X; Wu CI
    BMC Genomics; 2013 Oct; 14(1):711. PubMed ID: 24134808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AlienTrimmer: a tool to quickly and accurately trim off multiple short contaminant sequences from high-throughput sequencing reads.
    Criscuolo A; Brisse S
    Genomics; 2013; 102(5-6):500-6. PubMed ID: 23912058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Turtle: identifying frequent k-mers with cache-efficient algorithms.
    Roy RS; Bhattacharya D; Schliep A
    Bioinformatics; 2014 Jul; 30(14):1950-7. PubMed ID: 24618471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward perfect reads: self-correction of short reads via mapping on de Bruijn graphs.
    Limasset A; Flot JF; Peterlongo P
    Bioinformatics; 2020 Mar; 36(5):1374-1381. PubMed ID: 30785192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compact representation of k-mer de Bruijn graphs for genome read assembly.
    Rødland EA
    BMC Bioinformatics; 2013 Oct; 14():313. PubMed ID: 24152242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A space and time-efficient index for the compacted colored de Bruijn graph.
    Almodaresi F; Sarkar H; Srivastava A; Patro R
    Bioinformatics; 2018 Jul; 34(13):i169-i177. PubMed ID: 29949982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sealer: a scalable gap-closing application for finishing draft genomes.
    Paulino D; Warren RL; Vandervalk BP; Raymond A; Jackman SD; Birol I
    BMC Bioinformatics; 2015 Jul; 16(1):230. PubMed ID: 26209068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inference of viral quasispecies with a paired de Bruijn graph.
    Freire B; Ladra S; Paramá JR; Salmela L
    Bioinformatics; 2021 May; 37(4):473-481. PubMed ID: 32926162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GapFiller: a de novo assembly approach to fill the gap within paired reads.
    Nadalin F; Vezzi F; Policriti A
    BMC Bioinformatics; 2012; 13 Suppl 14(Suppl 14):S8. PubMed ID: 23095524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QuorUM: An Error Corrector for Illumina Reads.
    Marçais G; Yorke JA; Zimin A
    PLoS One; 2015; 10(6):e0130821. PubMed ID: 26083032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo assembly of bacterial genomes with repetitive DNA regions by dnaasm application.
    Kuśmirek W; Nowak R
    BMC Bioinformatics; 2018 Jul; 19(1):273. PubMed ID: 30021513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Index suffix-prefix overlaps by (w, k)-minimizer to generate long contigs for reads compression.
    Liu Y; Yu Z; Dinger ME; Li J
    Bioinformatics; 2019 Jun; 35(12):2066-2074. PubMed ID: 30407482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CAREx: context-aware read extension of paired-end sequencing data.
    Kallenborn F; Schmidt B
    BMC Bioinformatics; 2024 May; 25(1):186. PubMed ID: 38730374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A parallel algorithm for error correction in high-throughput short-read data on CUDA-enabled graphics hardware.
    Shi H; Schmidt B; Liu W; Müller-Wittig W
    J Comput Biol; 2010 Apr; 17(4):603-15. PubMed ID: 20426693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The complex task of choosing a de novo assembly: lessons from fungal genomes.
    Gallo JE; Muñoz JF; Misas E; McEwen JG; Clay OK
    Comput Biol Chem; 2014 Dec; 53 Pt A():97-107. PubMed ID: 25262360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PEAR: a fast and accurate Illumina Paired-End reAd mergeR.
    Zhang J; Kobert K; Flouri T; Stamatakis A
    Bioinformatics; 2014 Mar; 30(5):614-20. PubMed ID: 24142950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.