These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26399504)

  • 21. StLiter: A Novel Algorithm to Iteratively Build the Compacted de Bruijn Graph From Many Complete Genomes.
    Yu C; Mao K; Zhao Y; Chang C; Wang G
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2471-2483. PubMed ID: 33630738
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient Colored de Bruijn Graph for Indexing Reads.
    Hasegawa N; Shimizu K
    J Comput Biol; 2023 Jun; 30(6):648-662. PubMed ID: 37115583
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MegaGTA: a sensitive and accurate metagenomic gene-targeted assembler using iterative de Bruijn graphs.
    Li D; Huang Y; Leung CM; Luo R; Ting HF; Lam TW
    BMC Bioinformatics; 2017 Oct; 18(Suppl 12):408. PubMed ID: 29072142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SAKE: Strobemer-assisted k-mer extraction.
    Leinonen M; Salmela L
    PLoS One; 2023; 18(11):e0294415. PubMed ID: 38019768
    [TBL] [Abstract][Full Text] [Related]  

  • 25. HyDA-Vista: towards optimal guided selection of k-mer size for sequence assembly.
    Shariat B; Movahedi NS; Chitsaz H; Boucher C
    BMC Genomics; 2014; 15 Suppl 10(Suppl 10):S9. PubMed ID: 25558875
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Is the whole greater than the sum of its parts? De novo assembly strategies for bacterial genomes based on paired-end sequencing.
    Chen TW; Gan RC; Chang YF; Liao WC; Wu TH; Lee CC; Huang PJ; Lee CY; Chen YY; Chiu CH; Tang P
    BMC Genomics; 2015 Aug; 16(1):648. PubMed ID: 26315384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics.
    Rochette NC; Rivera-Colón AG; Catchen JM
    Mol Ecol; 2019 Nov; 28(21):4737-4754. PubMed ID: 31550391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RAMBO-K: Rapid and Sensitive Removal of Background Sequences from Next Generation Sequencing Data.
    Tausch SH; Renard BY; Nitsche A; Dabrowski PW
    PLoS One; 2015; 10(9):e0137896. PubMed ID: 26379285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A general near-exact k-mer counting method with low memory consumption enables de novo assembly of 106× human sequence data in 2.7 hours.
    Shi CH; Yip KY
    Bioinformatics; 2020 Dec; 36(Suppl_2):i625-i633. PubMed ID: 33381843
    [TBL] [Abstract][Full Text] [Related]  

  • 30. COPE: an accurate k-mer-based pair-end reads connection tool to facilitate genome assembly.
    Liu B; Yuan J; Yiu SM; Li Z; Xie Y; Chen Y; Shi Y; Zhang H; Li Y; Lam TW; Luo R
    Bioinformatics; 2012 Nov; 28(22):2870-4. PubMed ID: 23044551
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ViQUF: De Novo Viral Quasispecies Reconstruction Using Unitig-Based Flow Networks.
    Freire B; Ladra S; Parama JR; Salmela L
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1550-1562. PubMed ID: 35853050
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sequence assembly using next generation sequencing data--challenges and solutions.
    Chin FY; Leung HC; Yiu SM
    Sci China Life Sci; 2014 Nov; 57(11):1140-8. PubMed ID: 25326069
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Survey of gene splicing algorithms based on reads.
    Si X; Wang Q; Zhang L; Wu R; Ma J
    Bioengineered; 2017 Nov; 8(6):750-758. PubMed ID: 28873323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient counting of k-mers in DNA sequences using a bloom filter.
    Melsted P; Pritchard JK
    BMC Bioinformatics; 2011 Aug; 12():333. PubMed ID: 21831268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bloom Filter Trie: an alignment-free and reference-free data structure for pan-genome storage.
    Holley G; Wittler R; Stoye J
    Algorithms Mol Biol; 2016; 11():3. PubMed ID: 27087830
    [TBL] [Abstract][Full Text] [Related]  

  • 36. These are not the k-mers you are looking for: efficient online k-mer counting using a probabilistic data structure.
    Zhang Q; Pell J; Canino-Koning R; Howe AC; Brown CT
    PLoS One; 2014; 9(7):e101271. PubMed ID: 25062443
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring genome characteristics and sequence quality without a reference.
    Simpson JT
    Bioinformatics; 2014 May; 30(9):1228-35. PubMed ID: 24443382
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of common k-mers for whole genome sequences using SSB-tree.
    Choi JH; Cho HG
    Genome Inform; 2002; 13():30-41. PubMed ID: 14571372
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequence Assembly.
    Huang X
    Methods Mol Biol; 2017; 1525():35-45. PubMed ID: 27896716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. BEETL-fastq: a searchable compressed archive for DNA reads.
    Janin L; Schulz-Trieglaff O; Cox AJ
    Bioinformatics; 2014 Oct; 30(19):2796-801. PubMed ID: 24950811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.