BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 26399585)

  • 1. Negatively charged silver nanoparticles cause retinal vascular permeability by activating plasma contact system and disrupting adherens junction.
    Long YM; Zhao XC; Clermont AC; Zhou QF; Liu Q; Feener EP; Yan B; Jiang GB
    Nanotoxicology; 2016; 10(4):501-11. PubMed ID: 26399585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intravenous administration of silver nanoparticles causes organ toxicity through intracellular ROS-related loss of inter-endothelial junction.
    Guo H; Zhang J; Boudreau M; Meng J; Yin JJ; Liu J; Xu H
    Part Fibre Toxicol; 2016 Apr; 13():21. PubMed ID: 27129495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothelial cell permeability during hantavirus infection involves factor XII-dependent increased activation of the kallikrein-kinin system.
    Taylor SL; Wahl-Jensen V; Copeland AM; Jahrling PB; Schmaljohn CS
    PLoS Pathog; 2013; 9(7):e1003470. PubMed ID: 23874198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver nanoparticles interact with the cell membrane and increase endothelial permeability by promoting VE-cadherin internalization.
    Sun X; Shi J; Zou X; Wang C; Yang Y; Zhang H
    J Hazard Mater; 2016 Nov; 317():570-578. PubMed ID: 27344258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perfluorohexadecanoic acid increases paracellular permeability in endothelial cells through the activation of plasma kallikrein-kinin system.
    Liu QS; Hao F; Sun Z; Long Y; Zhou Q; Jiang G
    Chemosphere; 2018 Jan; 190():191-200. PubMed ID: 28987408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of silver and titanium dioxide nanoparticles on in vitro blood-brain barrier permeability.
    Chen IC; Hsiao IL; Lin HC; Wu CH; Chuang CY; Huang YJ
    Environ Toxicol Pharmacol; 2016 Oct; 47():108-118. PubMed ID: 27664952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vascular tube formation and angiogenesis induced by polyvinylpyrrolidone-coated silver nanoparticles.
    Kang K; Lim DH; Choi IH; Kang T; Lee K; Moon EY; Yang Y; Lee MS; Lim JS
    Toxicol Lett; 2011 Sep; 205(3):227-34. PubMed ID: 21729742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sunlight-driven reduction of silver ion to silver nanoparticle by organic matter mitigates the acute toxicity of silver to Daphnia magna.
    Zhang Z; Yang X; Shen M; Yin Y; Liu J
    J Environ Sci (China); 2015 Sep; 35():62-68. PubMed ID: 26354693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna.
    Zhao CM; Wang WX
    Nanotoxicology; 2012 Jun; 6(4):361-70. PubMed ID: 21591875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonstrating approaches to chemically modify the surface of Ag nanoparticles in order to influence their cytotoxicity and biodistribution after single dose acute intravenous administration.
    Pang C; Brunelli A; Zhu C; Hristozov D; Liu Y; Semenzin E; Wang W; Tao W; Liang J; Marcomini A; Chen C; Zhao B
    Nanotoxicology; 2016; 10(2):129-39. PubMed ID: 25962681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Both released silver ions and particulate Ag contribute to the toxicity of AgNPs to earthworm Eisenia fetida.
    Li L; Wu H; Peijnenburg WJ; van Gestel CA
    Nanotoxicology; 2015; 9(6):792-801. PubMed ID: 25387252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repeated dose (28-day) administration of silver nanoparticles of varied size and coating does not significantly alter the indigenous murine gut microbiome.
    Wilding LA; Bassis CM; Walacavage K; Hashway S; Leroueil PR; Morishita M; Maynard AD; Philbert MA; Bergin IL
    Nanotoxicology; 2016; 10(5):513-20. PubMed ID: 26525505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid-dependent transformations of citrate-coated silver nanoparticles: impact on morphology, stability and toxicity.
    Shi J; Sun X; Zou X; Zhang H
    Toxicol Lett; 2014 Aug; 229(1):17-24. PubMed ID: 24910988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain-targeted distribution and high retention of silver by chronic intranasal instillation of silver nanoparticles and ions in Sprague-Dawley rats.
    Wen R; Yang X; Hu L; Sun C; Zhou Q; Jiang G
    J Appl Toxicol; 2016 Mar; 36(3):445-53. PubMed ID: 26584724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Male- and female-derived somatic and germ cell-specific toxicity of silver nanoparticles in mouse.
    Han JW; Jeong JK; Gurunathan S; Choi YJ; Das J; Kwon DN; Cho SG; Park C; Seo HG; Park JK; Kim JH
    Nanotoxicology; 2016; 10(3):361-73. PubMed ID: 26470004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The bradykinin-forming cascade: a historical perspective.
    Kaplan AP
    Chem Immunol Allergy; 2014; 100():205-13. PubMed ID: 24925400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. More than the ions: the effects of silver nanoparticles on Lolium multiflorum.
    Yin L; Cheng Y; Espinasse B; Colman BP; Auffan M; Wiesner M; Rose J; Liu J; Bernhardt ES
    Environ Sci Technol; 2011 Mar; 45(6):2360-7. PubMed ID: 21341685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots.
    Cvjetko P; Milošić A; Domijan AM; Vinković Vrček I; Tolić S; Peharec Štefanić P; Letofsky-Papst I; Tkalec M; Balen B
    Ecotoxicol Environ Saf; 2017 Mar; 137():18-28. PubMed ID: 27894021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathogenic mechanisms of bradykinin mediated diseases: dysregulation of an innate inflammatory pathway.
    Kaplan AP; Joseph K
    Adv Immunol; 2014; 121():41-89. PubMed ID: 24388213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alteration in the mRNA expression of genes associated with gastrointestinal permeability and ileal TNF-α secretion due to the exposure of silver nanoparticles in Sprague-Dawley rats.
    Orr SE; Gokulan K; Boudreau M; Cerniglia CE; Khare S
    J Nanobiotechnology; 2019 May; 17(1):63. PubMed ID: 31084603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.