BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26400003)

  • 1. Broadband near-field enhancement in the macro-periodic and micro-random structure with a hybridized excitation of propagating Bloch-plasmonic and localized surface-plasmonic modes.
    Lu H; Ren X; Sha WE; Ho HP; Choy WC
    Nanoscale; 2015 Oct; 7(40):16798-804. PubMed ID: 26400003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and theoretical investigation of macro-periodic and micro-random nanostructures with simultaneously spatial translational symmetry and long-range order breaking.
    Lu H; Ren X; Sha WE; Chen J; Kang Z; Zhang H; Ho HP; Choy WC
    Sci Rep; 2015 Jan; 5():7876. PubMed ID: 25597407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Far-field and near-field monitoring of hybridized optical modes from Au nanoprisms suspended on a graphene/Si nanopillar array.
    Nien LW; Chen K; Dao TD; Ishii S; Hsueh CH; Nagao T
    Nanoscale; 2017 Nov; 9(43):16950-16959. PubMed ID: 29077124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies.
    Zhang T; Chen L; Wang B; Li X
    Sci Rep; 2015 Jun; 5():11195. PubMed ID: 26057188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation on the second part of the electromagnetic SERS enhancement and resulting fabrication strategies of anisotropic plasmonic arrays.
    Cialla D; Petschulat J; Hübner U; Schneidewind H; Zeisberger M; Mattheis R; Pertsch T; Schmitt M; Möller R; Popp J
    Chemphyschem; 2010 Jun; 11(9):1918-24. PubMed ID: 20401896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple-wavelength plasmonic nanoantennas.
    Boriskina SV; Dal Negro L
    Opt Lett; 2010 Feb; 35(4):538-40. PubMed ID: 20160810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.
    Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman enhancement on a broadband meta-surface.
    Ayas S; Güner H; Türker B; Ekiz OÖ; Dirisaglik F; Okyay AK; Dâna A
    ACS Nano; 2012 Aug; 6(8):6852-61. PubMed ID: 22845672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incident angle-tuned, broadband, ultrahigh-sensitivity plasmonic antennas prepared from nanoparticles on imprinted mirrors.
    Yu CC; Tseng YC; Su PY; Lin KT; Shao CC; Chou SY; Yen YT; Chen HL
    Nanoscale; 2015 Mar; 7(9):3985-96. PubMed ID: 25567353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multipitched Diffraction Gratings for Surface Plasmon Resonance-Enhanced Infrared Reflection Absorption Spectroscopy.
    Petefish JW; Hillier AC
    Anal Chem; 2015 Nov; 87(21):10862-70. PubMed ID: 26458177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering photonic-plasmonic coupling in metal nanoparticle necklaces.
    Pasquale AJ; Reinhard BM; Dal Negro L
    ACS Nano; 2011 Aug; 5(8):6578-85. PubMed ID: 21739951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evanescent field excited plasmonic nano-antenna for improving SERS signal.
    Gu Y; Li H; Xu S; Liu Y; Xu W
    Phys Chem Chem Phys; 2013 Oct; 15(37):15494-8. PubMed ID: 23942757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybridization between plasmonic and photonic modes in laser-induced self-organized quasi-random plasmonic metasurfaces.
    Le VD; Lefkir Y; Destouches N
    Nanoscale; 2023 Dec; 15(47):19339-19350. PubMed ID: 38009459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the tip shape on the localized field enhancement and far field radiation pattern of the plasmonic inverted pyramidal nanostructures with the tips for surface-enhanced Raman scattering.
    Cheng HH; Chen SW; Chang YY; Chu JY; Lin DZ; Chen YP; Li JH
    Opt Express; 2011 Oct; 19(22):22125-41. PubMed ID: 22109056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarization-Controllable Plasmonic Enhancement on the Optical Response of Two-Dimensional GaSe Layers.
    Wan W; Yin J; Wu Y; Zheng X; Yang W; Wang H; Zhou J; Chen J; Wu Z; Li X; Kang J
    ACS Appl Mater Interfaces; 2019 May; 11(21):19631-19637. PubMed ID: 31038912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-infrared surface-enhanced Raman spectroscopy (NIR-SERS) for the identification of eosin Y: theoretical calculations and evaluation of two different nanoplasmonic substrates.
    Greeneltch NG; Davis AS; Valley NA; Casadio F; Schatz GC; Van Duyne RP; Shah NC
    J Phys Chem A; 2012 Dec; 116(48):11863-9. PubMed ID: 23102210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide.
    Awazu K; Fujimaki M; Rockstuhl C; Tominaga J; Murakami H; Ohki Y; Yoshida N; Watanabe T
    J Am Chem Soc; 2008 Feb; 130(5):1676-80. PubMed ID: 18189392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hollow plasmonic antennas for broadband SERS spectroscopy.
    Messina GC; Malerba M; Zilio P; Miele E; Dipalo M; Ferrara L; De Angelis F
    Beilstein J Nanotechnol; 2015; 6():492-8. PubMed ID: 25821690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances.
    Sharma Y; Dhawan A
    Nanotechnology; 2014 Feb; 25(8):085202. PubMed ID: 24492249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips.
    Bao W; Staffaroni M; Bokor J; Salmeron MB; Yablonovitch E; Cabrini S; Weber-Bargioni A; Schuck PJ
    Opt Express; 2013 Apr; 21(7):8166-76. PubMed ID: 23571906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.