These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
389 related articles for article (PubMed ID: 26400053)
1. Biological control of Botrytis cinerea on tomato plants using Streptomyces ahygroscopicus strain CK-15. Ge BB; Cheng Y; Liu Y; Liu BH; Zhang KC Lett Appl Microbiol; 2015 Dec; 61(6):596-602. PubMed ID: 26400053 [TBL] [Abstract][Full Text] [Related]
2. Synergistic effect of the combined bio-fungicides ε-poly-l-lysine and chitooligosaccharide in controlling grey mould (Botrytis cinerea) in tomatoes. Sun G; Yang Q; Zhang A; Guo J; Liu X; Wang Y; Ma Q Int J Food Microbiol; 2018 Jul; 276():46-53. PubMed ID: 29656220 [TBL] [Abstract][Full Text] [Related]
3. Primary Mode of Action of the Novel Sulfonamide Fungicide against Yan X; Chen S; Sun W; Zhou X; Yang D; Yuan H; Wang D Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163447 [No Abstract] [Full Text] [Related]
5. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea. Gao P; Qin J; Li D; Zhou S PLoS One; 2018; 13(1):e0190932. PubMed ID: 29320571 [TBL] [Abstract][Full Text] [Related]
6. Impact of environmental factors on Streptomyces spp. metabolites against Botrytis cinerea. Boukaew S; Yossan S; Cheirsilp B; Prasertsan P J Basic Microbiol; 2022 May; 62(5):611-622. PubMed ID: 35064583 [TBL] [Abstract][Full Text] [Related]
7. Semi-Synthesis of Chloroxaloterpin A and B and Their Antifungal Activity against Zhang L; Wang X; Bi Y; Yu Z J Agric Food Chem; 2022 Jun; 70(23):7070-7076. PubMed ID: 35652483 [TBL] [Abstract][Full Text] [Related]
8. Antifungal action of chitosan in combination with fungicides in vitro and chitosan conjugate with gallic acid on tomatoes against Botrytis cinerea. Karpova N; Shagdarova B; Lunkov A; Il'ina A; Varlamov V Biotechnol Lett; 2021 Aug; 43(8):1565-1574. PubMed ID: 33974182 [TBL] [Abstract][Full Text] [Related]
9. Antifungal activity of valinomycin, a peptide antibiotic produced by Streptomyces sp. Strain M10 antagonistic to Botrytis cinerea. Park CN; Lee JM; Lee D; Kim BS J Microbiol Biotechnol; 2008 May; 18(5):880-4. PubMed ID: 18633285 [TBL] [Abstract][Full Text] [Related]
10. Fungicide resistance of Botrytis cinerea in tomato greenhouses in the Canary Islands and effectiveness of non-chemical treatments against gray mold. Rodríguez A; Acosta A; Rodríguez C World J Microbiol Biotechnol; 2014 Sep; 30(9):2397-406. PubMed ID: 24817605 [TBL] [Abstract][Full Text] [Related]
11. Inhibitory effect of lactoferrin against gray mould on tomato plants caused by Botrytis cinerea and possible mechanisms of action. Wang J; Xia XM; Wang HY; Li PP; Wang KY Int J Food Microbiol; 2013 Feb; 161(3):151-7. PubMed ID: 23333340 [TBL] [Abstract][Full Text] [Related]
12. Perillaldehyde Functions as a Potential Antifungal Agent by Triggering Metacaspase-Independent Apoptosis in Botrytis cinerea. Wang G; Wang Y; Wang K; Zhao H; Liu M; Liang W; Li D Microbiol Spectr; 2023 Jun; 11(3):e0052623. PubMed ID: 37191530 [TBL] [Abstract][Full Text] [Related]
13. Synergistic Effect of Combined Application of a New Fungicide Fluopimomide with a Biocontrol Agent Ji X; Li J; Meng Z; Zhang S; Dong B; Qiao K Plant Dis; 2019 Aug; 103(8):1991-1997. PubMed ID: 31169087 [TBL] [Abstract][Full Text] [Related]
14. Bio-perfume guns: Antifungal volatile activity of Bacillus sp. LNXM12 against postharvest pathogen Botrytis cinerea in tomato and strawberry. Khan AR; Ali Q; Ayaz M; Bilal MS; Tariq H; El-Komy MH; Gu Q; Wu H; Vater J; Gao X Pestic Biochem Physiol; 2024 Aug; 203():105995. PubMed ID: 39084769 [TBL] [Abstract][Full Text] [Related]
15. Improvement of Wuyiencin biosynthesis in Streptomyces wuyiensis CK-15 by identification of a key regulator, WysR. Liu Y; Ryu H; Ge B; Pan G; Sun L; Park K; Zhang K J Microbiol Biotechnol; 2014 Dec; 24(12):1644-53. PubMed ID: 25112317 [TBL] [Abstract][Full Text] [Related]
16. The Biocontrol Efficacy of Lian Q; Zhang J; Gan L; Ma Q; Zong Z; Wang Y Biomed Res Int; 2017; 2017():9486794. PubMed ID: 29318156 [TBL] [Abstract][Full Text] [Related]
17. Diterpenoids from Streptomyces sp. SN194 and Their Antifungal Activity against Botrytis cinerea. Bi Y; Yu Z J Agric Food Chem; 2016 Nov; 64(45):8525-8529. PubMed ID: 27794606 [TBL] [Abstract][Full Text] [Related]
18. Biocontrol agents of Botrytis cinerea tested in climate chambers by making artificial infection on tomato leafs. Gielen S; Aerts R; Seels B Commun Agric Appl Biol Sci; 2004; 69(4):631-9. PubMed ID: 15756850 [TBL] [Abstract][Full Text] [Related]
19. iTRAQ-based proteomic analysis reveals the mechanisms of Botrytis cinerea controlled with Wuyiencin. Shi L; Ge B; Wang J; Liu B; Ma J; Wei Q; Zhang K BMC Microbiol; 2019 Dec; 19(1):280. PubMed ID: 31829181 [TBL] [Abstract][Full Text] [Related]
20. Development of novel 2-substituted acylaminoethylsulfonamide derivatives as fungicides against Botrytis cinerea. Wang M; Du Y; Liu C; Yang X; Qin P; Qi Z; Ji M; Li X Bioorg Chem; 2019 Jun; 87():56-69. PubMed ID: 30877868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]