These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 26400082)

  • 101. Cross-talk between the catalytic core and the regulatory domain in cystathionine β-synthase: study by differential covalent labeling and computational modeling.
    Hnízda A; Spiwok V; Jurga V; Kozich V; Kodícek M; Kraus JP
    Biochemistry; 2010 Dec; 49(49):10526-34. PubMed ID: 21062078
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Structural and biochemical characterization of active sites mutant in human inorganic pyrophosphatase.
    Zheng S; Zheng C; Chen S; Guo J; Huang L; Huang Z; Xu S; Wu Y; Li S; Lin J; You Y; Hu F
    Biochim Biophys Acta Gen Subj; 2024 May; 1868(5):130594. PubMed ID: 38428647
    [TBL] [Abstract][Full Text] [Related]  

  • 103. An unusual, His-dependent family I pyrophosphatase from Mycobacterium tuberculosis.
    Tammenkoski M; Benini S; Magretova NN; Baykov AA; Lahti R
    J Biol Chem; 2005 Dec; 280(51):41819-26. PubMed ID: 16239227
    [TBL] [Abstract][Full Text] [Related]  

  • 104. The second messenger c-di-AMP inhibits the osmolyte uptake system OpuC in Staphylococcus aureus.
    Schuster CF; Bellows LE; Tosi T; Campeotto I; Corrigan RM; Freemont P; Gründling A
    Sci Signal; 2016 Aug; 9(441):ra81. PubMed ID: 27531650
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Structural Studies of Potassium Transport Protein KtrA Regulator of Conductance of K+ (RCK) C Domain in Complex with Cyclic Diadenosine Monophosphate (c-di-AMP).
    Kim H; Youn SJ; Kim SO; Ko J; Lee JO; Choi BS
    J Biol Chem; 2015 Jun; 290(26):16393-402. PubMed ID: 25957408
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Quaternary structure and metal ion requirement of family II pyrophosphatases from Bacillus subtilis, Streptococcus gordonii, and Streptococcus mutans.
    Parfenyev AN; Salminen A; Halonen P; Hachimori A; Baykov AA; Lahti R
    J Biol Chem; 2001 Jul; 276(27):24511-8. PubMed ID: 11342544
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Structural and biochemical characterization of a nucleotide hydrolase from Streptococcus pneumonia.
    Jin Y; Ke J; Zheng P; Zhang H; Zhu Z; Niu L
    Structure; 2024 Aug; 32(8):1197-1207.e4. PubMed ID: 38701795
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Substrate ambiguity among the nudix hydrolases: biologically significant, evolutionary remnant, or both?
    McLennan AG
    Cell Mol Life Sci; 2013 Feb; 70(3):373-85. PubMed ID: 23184251
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Insights into Domain Organization and Regulatory Mechanism of Cystathionine Beta-Synthase from
    Conter C; Fruncillo S; Favretto F; Fernández-Rodríguez C; Dominici P; Martínez-Cruz LA; Astegno A
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35897745
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Fhit-nucleotide specificity probed with novel fluorescent and fluorogenic substrates.
    Draganescu A; Hodawadekar SC; Gee KR; Brenner C
    J Biol Chem; 2000 Feb; 275(7):4555-60. PubMed ID: 10671479
    [TBL] [Abstract][Full Text] [Related]  

  • 111. New insights into the structure and function of CNNM proteins.
    Chen YS; Gehring K
    FEBS J; 2023 Dec; 290(23):5475-5495. PubMed ID: 37222397
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Functional and structural asymmetry suggest a unifying principle for catalysis in membrane-bound pyrophosphatases.
    Strauss J; Wilkinson C; Vidilaseris K; de Castro Ribeiro OM; Liu J; Hillier J; Wichert M; Malinen AM; Gehl B; Jeuken LJ; Pearson AR; Goldman A
    EMBO Rep; 2024 Feb; 25(2):853-875. PubMed ID: 38182815
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Microbial inorganic pyrophosphatases.
    Lahti R
    Microbiol Rev; 1983 Jun; 47(2):169-78. PubMed ID: 6135978
    [No Abstract]   [Full Text] [Related]  

  • 114. Toward a quantum-mechanical description of metal-assisted phosphoryl transfer in pyrophosphatase.
    Heikinheimo P; Tuominen V; Ahonen AK; Teplyakov A; Cooperman BS; Baykov AA; Lahti R; Goldman A
    Proc Natl Acad Sci U S A; 2001 Mar; 98(6):3121-6. PubMed ID: 11248042
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Structural and mechanistic insights into the bifunctional HISN2 enzyme catalyzing the second and third steps of histidine biosynthesis in plants.
    Witek W; Sliwiak J; Ruszkowski M
    Sci Rep; 2021 May; 11(1):9647. PubMed ID: 33958623
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Nucleotide pyrophosphatase activities of seminal plasma. II. Phosphate release from nucleotide pyrophosphate compounds by bovine seminal plasma enzymes.
    WHEAT RW; KRICK EB; BROWNLEE ST
    J Biol Chem; 1960 Dec; 235():3570-2. PubMed ID: 13784731
    [No Abstract]   [Full Text] [Related]  

  • 117. The inorganic pyrophosphatases of microorganisms: a structural and functional review.
    García-Contreras R; de la Mora J; Mora-Montes HM; Martínez-Álvarez JA; Vicente-Gómez M; Padilla-Vaca F; Vargas-Maya NI; Franco B
    PeerJ; 2024; 12():e17496. PubMed ID: 38938619
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Specific Mutations Reverse Regulatory Effects of Adenosine Phosphates and Increase Their Binding Stoichiometry in CBS Domain-Containing Pyrophosphatase.
    Anashkin VA; Kirillova EA; Orlov VN; Baykov AA
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38891956
    [TBL] [Abstract][Full Text] [Related]  

  • 119. The Structure and Nucleotide-Binding Characteristics of Regulated Cystathionine β-Synthase Domain-Containing Pyrophosphatase without One Catalytic Domain.
    Zamakhov IM; Anashkin VA; Moiseenko AV; Orlov VN; Vorobyeva NN; Sokolova OS; Baykov AA
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38138989
    [TBL] [Abstract][Full Text] [Related]  

  • 120.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.