BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 26400092)

  • 1. microRNA-31 modulates skeletal patterning in the sea urchin embryo.
    Stepicheva NA; Song JL
    Development; 2015 Nov; 142(21):3769-80. PubMed ID: 26400092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. microRNA-31 regulates skeletogenesis by direct suppression of Eve and Wnt1.
    Sampilo NF; Stepicheva NA; Song JL
    Dev Biol; 2021 Apr; 472():98-114. PubMed ID: 33484703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth factor-mediated mesodermal cell guidance and skeletogenesis during sea urchin gastrulation.
    Adomako-Ankomah A; Ettensohn CA
    Development; 2013 Oct; 140(20):4214-25. PubMed ID: 24026121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton.
    Duloquin L; Lhomond G; Gache C
    Development; 2007 Jun; 134(12):2293-302. PubMed ID: 17507391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Snail repressor is required for PMC ingression in the sea urchin embryo.
    Wu SY; McClay DR
    Development; 2007 Mar; 134(6):1061-70. PubMed ID: 17287249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network.
    Sun Z; Ettensohn CA
    Gene Expr Patterns; 2014 Nov; 16(2):93-103. PubMed ID: 25460514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. P58-A and P58-B: novel proteins that mediate skeletogenesis in the sea urchin embryo.
    Adomako-Ankomah A; Ettensohn CA
    Dev Biol; 2011 May; 353(1):81-93. PubMed ID: 21362416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. microRNA-1 regulates sea urchin skeletogenesis by directly targeting skeletogenic genes and modulating components of signaling pathways.
    Sampilo NF; Song JL
    Dev Biol; 2024 Apr; 508():123-137. PubMed ID: 38290645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network.
    Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T
    Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global analysis of primary mesenchyme cell cis-regulatory modules by chromatin accessibility profiling.
    Shashikant T; Khor JM; Ettensohn CA
    BMC Genomics; 2018 Mar; 19(1):206. PubMed ID: 29558892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TGF-β sensu stricto signaling regulates skeletal morphogenesis in the sea urchin embryo.
    Sun Z; Ettensohn CA
    Dev Biol; 2017 Jan; 421(2):149-160. PubMed ID: 27955944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolution of a new cell type was associated with competition for a signaling ligand.
    Ettensohn CA; Adomako-Ankomah A
    PLoS Biol; 2019 Sep; 17(9):e3000460. PubMed ID: 31532765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The surprising complexity of the transcriptional regulation of the spdri gene reveals the existence of new linkages inside sea urchin's PMC and Oral Ectoderm Gene Regulatory Networks.
    Mahmud AA; Amore G
    Dev Biol; 2008 Oct; 322(2):425-34. PubMed ID: 18718463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA-Seq identifies SPGs as a ventral skeletal patterning cue in sea urchins.
    Piacentino ML; Zuch DT; Fishman J; Rose S; Speranza EE; Li C; Yu J; Chung O; Ramachandran J; Ferrell P; Patel V; Reyna A; Hameeduddin H; Chaves J; Hewitt FB; Bardot E; Lee D; Core AB; Hogan JD; Keenan JL; Luo L; Coulombe-Huntington J; Blute TA; Oleinik E; Ibn-Salem J; Poustka AJ; Bradham CA
    Development; 2016 Feb; 143(4):703-14. PubMed ID: 26755701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alx1, a member of the Cart1/Alx3/Alx4 subfamily of Paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo.
    Ettensohn CA; Illies MR; Oliveri P; De Jong DL
    Development; 2003 Jul; 130(13):2917-28. PubMed ID: 12756175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins.
    Rafiq K; Shashikant T; McManus CJ; Ettensohn CA
    Development; 2014 Feb; 141(4):950-61. PubMed ID: 24496631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of primary mesenchyme cell patterning by misregulated ectodermal expression of SpMsx in sea urchin embryos.
    Tan H; Ransick A; Wu H; Dobias S; Liu YH; Maxson R
    Dev Biol; 1998 Sep; 201(2):230-46. PubMed ID: 9740661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zygotic hypoxia-inducible factor alpha regulates spicule elongation in the sea urchin embryo.
    Chang WL; Su YH
    Dev Biol; 2022 Apr; 484():63-74. PubMed ID: 35183512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size regulation and morphogenesis: a cellular analysis of skeletogenesis in the sea urchin embryo.
    Ettensohn CA; Malinda KM
    Development; 1993 Sep; 119(1):155-67. PubMed ID: 8275852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.