These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 26400584)

  • 21. Photo-switchable bistable twisted nematic liquid crystal optical switch.
    Wang CT; Wu YC; Lin TH
    Opt Express; 2013 Feb; 21(4):4361-6. PubMed ID: 23481969
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Switching Chirality in Arrays of Shape-Reconfigurable Spindle Microparticles.
    Liu M; Han X; Nah SH; Wu T; Wang Y; Feng L; Wu L; Yang S
    Adv Mater; 2023 Aug; 35(31):e2303009. PubMed ID: 37272788
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Photo- and Thermo-Driven Azoarene-Based Circularly Polarized Luminescence Molecular Switch in a Liquid Crystal Host.
    Kang W; Tang Y; Meng X; Lin S; Zhang X; Guo J; Li Q
    Angew Chem Int Ed Engl; 2023 Nov; 62(48):e202311486. PubMed ID: 37648676
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-Assembly of Chiral Plasmonic Nanostructures.
    Lan X; Wang Q
    Adv Mater; 2016 Dec; 28(47):10499-10507. PubMed ID: 27327654
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures.
    Li Y; Xue C; Wang M; Urbas A; Li Q
    Angew Chem Int Ed Engl; 2013 Dec; 52(51):13703-7. PubMed ID: 24150899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Free-Standing Optically Switchable Chiral Plasmonic Photonic Crystal Based on Self-Assembled Cellulose Nanorods and Gold Nanoparticles.
    Chu G; Wang X; Yin H; Shi Y; Jiang H; Chen T; Gao J; Qu D; Xu Y; Ding D
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21797-806. PubMed ID: 26378345
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Light-driven reversible handedness inversion in self-organized helical superstructures.
    Mathews M; Zola RS; Hurley S; Yang DK; White TJ; Bunning TJ; Li Q
    J Am Chem Soc; 2010 Dec; 132(51):18361-6. PubMed ID: 21126075
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-responsible chameleon molecule with chiral naphthyl and azobenzene moieties.
    Kim DY; Lee SA; Park M; Choi YJ; Kang SW; Jeong KU
    Soft Matter; 2015 Apr; 11(15):2924-33. PubMed ID: 25742914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetic assembly of plasmonic chiral superstructures with dynamic chiroptical responses.
    Wu C; Fan Q; Li Z; Ye Z; Yin Y
    Mater Horiz; 2024 Feb; 11(3):680-687. PubMed ID: 37987179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spin-Selective Transmission in Chiral Folded Metasurfaces.
    Yang S; Liu Z; Hu S; Jin AZ; Yang H; Zhang S; Li J; Gu C
    Nano Lett; 2019 Jun; 19(6):3432-3439. PubMed ID: 30608711
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visible-Band Chiroptical Meta-devices with Phase-Change Adjusted Optical Chirality.
    Zhang L; Gao K; Lu F; Xu L; Rahmani M; Sun L; Gao F; Zhang W; Mei T
    Nano Lett; 2022 Sep; 22(18):7628-7635. PubMed ID: 36112094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reversible Controlling the Supramolecular Chirality of Side Chain Azobenzene Polymers: Chiral Induction and Modulation.
    Li G; Xu M; Zhang S; Yang G; Li W
    Macromol Rapid Commun; 2022 Mar; 43(6):e2100904. PubMed ID: 35133021
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Helical Magnetic Field-Induced Real-Time Plasmonic Chirality Modulation.
    Jeong KJ; Lee DK; Tran VT; Wang C; Lv J; Park J; Tang Z; Lee J
    ACS Nano; 2020 Jun; 14(6):7152-7160. PubMed ID: 32298072
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic/Plasmonic Hybrid Nanodisks with Dynamically Tunable Mechano-Chiroptical Responses.
    Qi F; Li L; Li Z; Qiu L; Meng Z; Yin Y
    ACS Nano; 2023 Jan; ():. PubMed ID: 36633532
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Uncovering the Circular Polarization Potential of Chiral Photonic Cellulose Films for Photonic Applications.
    Zheng H; Li W; Li W; Wang X; Tang Z; Zhang SX; Xu Y
    Adv Mater; 2018 Mar; 30(13):e1705948. PubMed ID: 29430768
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light-triggered Modulation of Supramolecular Chirality.
    Yang F; Yue B; Zhu L
    Chemistry; 2023 Apr; 29(22):e202203794. PubMed ID: 36653305
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D Helix Engineering in Chiral Photonic Materials.
    Kragt AJJ; Hoekstra DC; Stallinga S; Broer DJ; Schenning APHJ
    Adv Mater; 2019 Aug; 31(33):e1903120. PubMed ID: 31243825
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chiral amplification in a cyanobiphenyl nematic liquid crystal doped with helicene-like derivatives.
    Ferrarini A; Pieraccini S; Masiero S; Spada GP
    Beilstein J Org Chem; 2009 Oct; 5():50. PubMed ID: 19936270
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanophotonic Platforms for Chiral Sensing and Separation.
    Solomon ML; Saleh AAE; Poulikakos LV; Abendroth JM; Tadesse LF; Dionne JA
    Acc Chem Res; 2020 Mar; 53(3):588-598. PubMed ID: 31913015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polymer and Mesoporous Silica Microspheres with Chiral Nematic Order from Cellulose Nanocrystals.
    Wang PX; Hamad WY; MacLachlan MJ
    Angew Chem Int Ed Engl; 2016 Sep; 55(40):12460-4. PubMed ID: 27581056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.