BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26400672)

  • 1. Microfluidic device for DNA amplification of single cancer cells isolated from whole blood by self-seeding microwells.
    Yang Y; Rho HS; Stevens M; Tibbe AG; Gardeniers H; Terstappen LW
    Lab Chip; 2015 Nov; 15(22):4331-7. PubMed ID: 26400672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic whole genome amplification device for single cell sequencing.
    Yu Z; Lu S; Huang Y
    Anal Chem; 2014 Oct; 86(19):9386-90. PubMed ID: 25233049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic immunocapture of circulating pancreatic cells using parallel EpCAM and MUC1 capture: characterization, optimization and downstream analysis.
    Thege FI; Lannin TB; Saha TN; Tsai S; Kochman ML; Hollingsworth MA; Rhim AD; Kirby BJ
    Lab Chip; 2014 May; 14(10):1775-84. PubMed ID: 24681997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-seeding microwell chip for the isolation and characterization of single cells.
    Swennenhuis JF; Tibbe AG; Stevens M; Katika MR; van Dalum J; Tong HD; van Rijn CJ; Terstappen LW
    Lab Chip; 2015 Jul; 15(14):3039-46. PubMed ID: 26082273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs).
    Hyun KA; Lee TY; Lee SH; Jung HI
    Biosens Bioelectron; 2015 May; 67():86-92. PubMed ID: 25060749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic chip capable of generating and trapping emulsion droplets for digital loop-mediated isothermal amplification analysis.
    Ma YD; Luo K; Chang WH; Lee GB
    Lab Chip; 2018 Jan; 18(2):296-303. PubMed ID: 29188245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic DNA amplification--a review.
    Zhang Y; Ozdemir P
    Anal Chim Acta; 2009 Apr; 638(2):115-25. PubMed ID: 19327449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Cell Isolation of Circulating Tumor Cells from Whole Blood by Lateral Magnetophoretic Microseparation and Microfluidic Dispensing.
    Kim J; Cho H; Han SI; Han KH
    Anal Chem; 2016 May; 88(9):4857-63. PubMed ID: 27093098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic "Pouch" Chips for Immunoassays and Nucleic Acid Amplification Tests.
    Mauk MG; Liu C; Qiu X; Chen D; Song J; Bau HH
    Methods Mol Biol; 2017; 1572():467-488. PubMed ID: 28299706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple single cell screening and DNA MDA amplification chip for oncogenic mutation profiling.
    Li R; Zhou M; Yue C; Zhang W; Ma Y; Peng H; Hu Z; Wei Z
    Lab Chip; 2018 Feb; 18(5):723-734. PubMed ID: 29360118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-cell chemical lysis on microfluidic chips with arrays of microwells.
    Jen CP; Hsiao JH; Maslov NA
    Sensors (Basel); 2012; 12(1):347-58. PubMed ID: 22368473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-automated bacterial spore detection system with micro-fluidic chips for aerosol collection, spore treatment and ICAN DNA detection.
    Inami H; Tsuge K; Matsuzawa M; Sasaki Y; Togashi S; Komano A; Seto Y
    Biosens Bioelectron; 2009 Jul; 24(11):3299-305. PubMed ID: 19450964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequencing of human genomes extracted from single cancer cells isolated in a valveless microfluidic device.
    Marie R; Pødenphant M; Koprowska K; Bærlocher L; Vulders RCM; Wilding J; Ashley N; McGowan SJ; van Strijp D; van Hemert F; Olesen T; Agersnap N; Bilenberg B; Sabatel C; Schira J; Kristensen A; Bodmer W; van der Zaag PJ; Mir KU
    Lab Chip; 2018 Jun; 18(13):1891-1902. PubMed ID: 29873383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circle-to-circle amplification on a digital microfluidic chip for amplified single molecule detection.
    Kühnemund M; Witters D; Nilsson M; Lammertyn J
    Lab Chip; 2014 Aug; 14(16):2983-92. PubMed ID: 24934991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-priming compartmentalization digital LAMP for point-of-care.
    Zhu Q; Gao Y; Yu B; Ren H; Qiu L; Han S; Jin W; Jin Q; Mu Y
    Lab Chip; 2012 Nov; 12(22):4755-63. PubMed ID: 22986619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a real-world direct interface for integrated DNA extraction and amplification in a microfluidic device.
    Shaw KJ; Joyce DA; Docker PT; Dyer CE; Greenway GM; Greenman J; Haswell SJ
    Lab Chip; 2011 Feb; 11(3):443-8. PubMed ID: 21072429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel single cancer cell whole genome amplification using button-valve assisted mixing in nanoliter chambers.
    Yang Y; Swennenhuis JF; Rho HS; Le Gac S; Terstappen LW
    PLoS One; 2014; 9(9):e107958. PubMed ID: 25233459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-selective collection of circulating tumor cells using Vortex technology.
    Sollier E; Go DE; Che J; Gossett DR; O'Byrne S; Weaver WM; Kummer N; Rettig M; Goldman J; Nickols N; McCloskey S; Kulkarni RP; Di Carlo D
    Lab Chip; 2014 Jan; 14(1):63-77. PubMed ID: 24061411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Point-of-care rare cell cancer diagnostics.
    Issadore D
    Methods Mol Biol; 2015; 1256():123-37. PubMed ID: 25626536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted isolation and analysis of single tumor cells with aptamer-encoded microwell array on microfluidic device.
    Chen Q; Wu J; Zhang Y; Lin Z; Lin JM
    Lab Chip; 2012 Dec; 12(24):5180-5. PubMed ID: 23108418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.