These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 26400745)

  • 1. Decreasing sleep requirement with increasing numbers of neurons as a driver for bigger brains and bodies in mammalian evolution.
    Herculano-Houzel S
    Proc Biol Sci; 2015 Oct; 282(1816):20151853. PubMed ID: 26400745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Not all brains are made the same: new views on brain scaling in evolution.
    Herculano-Houzel S
    Brain Behav Evol; 2011; 78(1):22-36. PubMed ID: 21691045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular Scaling Rules for the Brains of Marsupials: Not as "Primitive" as Expected.
    Dos Santos SE; Porfirio J; da Cunha FB; Manger PR; Tavares W; Pessoa L; Raghanti MA; Sherwood CC; Herculano-Houzel S
    Brain Behav Evol; 2017; 89(1):48-63. PubMed ID: 28125804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation and evolution of mammalian corticospinal somata with special reference to primates.
    Nudo RJ; Sutherland DP; Masterton RB
    J Comp Neurol; 1995 Jul; 358(2):181-205. PubMed ID: 7560281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Even the smallest mammalian brain has yet to reveal its secrets.
    Naumann RK
    Brain Behav Evol; 2015; 85(1):1-3. PubMed ID: 25765173
    [No Abstract]   [Full Text] [Related]  

  • 6. Mammalian Brains Are Made of These: A Dataset of the Numbers and Densities of Neuronal and Nonneuronal Cells in the Brain of Glires, Primates, Scandentia, Eulipotyphlans, Afrotherians and Artiodactyls, and Their Relationship with Body Mass.
    Herculano-Houzel S; Catania K; Manger PR; Kaas JH
    Brain Behav Evol; 2015; 86(3-4):145-63. PubMed ID: 26418466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Order-specific quantitative patterns of cortical gyrification.
    Pillay P; Manger PR
    Eur J Neurosci; 2007 May; 25(9):2705-12. PubMed ID: 17459107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size and shape of the cerebral cortex in mammals. I. The cortical surface.
    Hofman MA
    Brain Behav Evol; 1985; 27(1):28-40. PubMed ID: 3836731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolution of isocortex.
    Kaas JH
    Brain Behav Evol; 1995; 46(4-5):187-96. PubMed ID: 8564462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic variation in cortical layer II immature neuron reservoir of mammals.
    La Rosa C; Cavallo F; Pecora A; Chincarini M; Ala U; Faulkes CG; Nacher J; Cozzi B; Sherwood CC; Amrein I; Bonfanti L
    Elife; 2020 Jul; 9():. PubMed ID: 32690132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution.
    Fonseca-Azevedo K; Herculano-Houzel S
    Proc Natl Acad Sci U S A; 2012 Nov; 109(45):18571-6. PubMed ID: 23090991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Avian sleep homeostasis: convergent evolution of complex brains, cognition and sleep functions in mammals and birds.
    Rattenborg NC; Martinez-Gonzalez D; Lesku JA
    Neurosci Biobehav Rev; 2009 Mar; 33(3):253-70. PubMed ID: 18789355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of neocortical gyrencephaly in African elephants (Loxodonta africana) and six species of cetaceans: comparison with other mammals.
    Manger PR; Prowse M; Haagensen M; Hemingway J
    J Comp Neurol; 2012 Aug; 520(11):2430-9. PubMed ID: 22237903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular scaling rules for rodent brains.
    Herculano-Houzel S; Mota B; Lent R
    Proc Natl Acad Sci U S A; 2006 Aug; 103(32):12138-43. PubMed ID: 16880386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fractal geometry of convoluted brains.
    Hofman MA
    J Hirnforsch; 1991; 32(1):103-11. PubMed ID: 1811015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolutionary origin of the mammalian cerebral cortex.
    Aboitiz F
    Biol Res; 1992; 25(1):41-9. PubMed ID: 1341579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. When larger brains do not have more neurons: increased numbers of cells are compensated by decreased average cell size across mouse individuals.
    Herculano-Houzel S; Messeder DJ; Fonseca-Azevedo K; Pantoja NA
    Front Neuroanat; 2015; 9():64. PubMed ID: 26082686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Larger brain size indirectly increases vulnerability to extinction in mammals.
    Gonzalez-Voyer A; González-Suárez M; Vilà C; Revilla E
    Evolution; 2016 Jun; 70(6):1364-75. PubMed ID: 27159368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling local and cross-species neuron number variations in the cerebral cortex as arising from a common mechanism.
    Cahalane DJ; Charvet CJ; Finlay BL
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17642-7. PubMed ID: 25422426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neocortex in early mammals and its subsequent variations.
    Kaas JH
    Ann N Y Acad Sci; 2011 Apr; 1225():28-36. PubMed ID: 21534990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.