BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 26400829)

  • 1. Assessment and acceleration of binding energy calculations for protein-ligand complexes by the fragment molecular orbital method.
    Otsuka T; Okimoto N; Taiji M
    J Comput Chem; 2015 Nov; 36(30):2209-18. PubMed ID: 26400829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular recognition mechanism of FK506 binding protein: an all-electron fragment molecular orbital study.
    Nakanishi I; Fedorov DG; Kitaura K
    Proteins; 2007 Jul; 68(1):145-58. PubMed ID: 17387719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method.
    Mazanetz MP; Ichihara O; Law RJ; Whittaker M
    J Cheminform; 2011 Jan; 3(1):2. PubMed ID: 21219630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the accuracy of the FMO binding affinity prediction of ligand-receptor complexes containing metals.
    Paciotti R; Marrone A; Coletti C; Re N
    J Comput Aided Mol Des; 2023 Dec; 37(12):707-719. PubMed ID: 37743428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio quantum mechanical study of the binding energies of human estrogen receptor alpha with its ligands: an application of fragment molecular orbital method.
    Fukuzawa K; Kitaura K; Uebayasi M; Nakata K; Kaminuma T; Nakano T
    J Comput Chem; 2005 Jan; 26(1):1-10. PubMed ID: 15521089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of the Multilayer Fragment Molecular Orbital Method to Predict the Rank Order of Protein-Ligand Binding Affinities: A Case Study Using Tankyrase 2 Inhibitors.
    Okimoto N; Otsuka T; Hirano Y; Taiji M
    ACS Omega; 2018 Apr; 3(4):4475-4485. PubMed ID: 31458673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 3D-QSAR Analysis of CDK2 Inhibitors Using FMO Calculations and PLS Regression.
    Yoshida T; Hirono S
    Chem Pharm Bull (Tokyo); 2019; 67(6):546-555. PubMed ID: 31155560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical Study of Protein-Ligand Interactions Using the Molecules-in-Molecules Fragmentation-Based Method.
    Thapa B; Beckett D; Erickson J; Raghavachari K
    J Chem Theory Comput; 2018 Oct; 14(10):5143-5155. PubMed ID: 30265003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-specific force field derived from the fragment molecular orbital method can improve protein-ligand binding interactions.
    Chang L; Ishikawa T; Kuwata K; Takada S
    J Comput Chem; 2013 May; 34(14):1251-7. PubMed ID: 23420697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multilayer formulation of the fragment molecular orbital method (FMO).
    Fedorov DG; Ishida T; Kitaura K
    J Phys Chem A; 2005 Mar; 109(11):2638-46. PubMed ID: 16833570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications.
    Nagata T; Fedorov DG; Kitaura K; Gordon MS
    J Chem Phys; 2009 Jul; 131(2):024101. PubMed ID: 19603964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimates of ligand-binding affinities supported by quantum mechanical methods.
    Söderhjelm P; Kongsted J; Genheden S; Ryde U
    Interdiscip Sci; 2010 Mar; 2(1):21-37. PubMed ID: 20640794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Affinity of HIV-1 antibody 2G12 with monosaccharides: a theoretical study based on explicit and implicit water models.
    Koyama Y; Ueno-Noto K; Takano K
    Comput Biol Chem; 2014 Apr; 49():36-44. PubMed ID: 24583603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RI-MP2 Gradient Calculation of Large Molecules Using the Fragment Molecular Orbital Method.
    Ishikawa T; Kuwata K
    J Phys Chem Lett; 2012 Feb; 3(3):375-9. PubMed ID: 26285854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding Free Energy Calculation Based on the Fragment Molecular Orbital Method and Its Application in Designing Novel SHP-2 Allosteric Inhibitors.
    Yuan Z; Chen X; Fan S; Chang L; Chu L; Zhang Y; Wang J; Li S; Xie J; Hu J; Miao R; Zhu L; Zhao Z; Li H; Li S
    Int J Mol Sci; 2024 Jan; 25(1):. PubMed ID: 38203841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined fragment molecular orbital cluster in molecule approach to massively parallel electron correlation calculations for large systems.
    Findlater AD; Zahariev F; Gordon MS
    J Phys Chem A; 2015 Apr; 119(15):3587-93. PubMed ID: 25794346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio fragment molecular orbital study of ligand binding to human progesterone receptor ligand-binding domain.
    Harada T; Yamagishi K; Nakano T; Kitaura K; Tokiwa H
    Naunyn Schmiedebergs Arch Pharmacol; 2008 Jun; 377(4-6):607-15. PubMed ID: 18330543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RI-MP3 calculations of biomolecules based on the fragment molecular orbital method.
    Ishikawa T; Sakakura K; Mochizuki Y
    J Comput Chem; 2018 Sep; 39(24):1970-1978. PubMed ID: 30277590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.