BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26401551)

  • 1. Enhanced stability of oral insulin in targeted peptide ligand trimethyl chitosan nanoparticles against trypsin.
    Chen J; Liu C; Shan W; Xiao Z; Guo H; Huang Y
    J Microencapsul; 2015; 32(7):632-41. PubMed ID: 26401551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery.
    Su FY; Lin KJ; Sonaje K; Wey SP; Yen TC; Ho YC; Panda N; Chuang EY; Maiti B; Sung HW
    Biomaterials; 2012 Mar; 33(9):2801-11. PubMed ID: 22243802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oral delivery of peptide drugs using nanoparticles self-assembled by poly(gamma-glutamic acid) and a chitosan derivative functionalized by trimethylation.
    Mi FL; Wu YY; Lin YH; Sonaje K; Ho YC; Chen CT; Juang JH; Sung HW
    Bioconjug Chem; 2008 Jun; 19(6):1248-55. PubMed ID: 18517235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Goblet cell targeting nanoparticle containing drug-loaded micelle cores for oral delivery of insulin.
    Zhang P; Xu Y; Zhu X; Huang Y
    Int J Pharm; 2015 Dec; 496(2):993-1005. PubMed ID: 26541299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Goblet cell-targeting nanoparticles for oral insulin delivery and the influence of mucus on insulin transport.
    Jin Y; Song Y; Zhu X; Zhou D; Chen C; Zhang Z; Huang Y
    Biomaterials; 2012 Feb; 33(5):1573-82. PubMed ID: 22093292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs.
    Lin YH; Sonaje K; Lin KM; Juang JH; Mi FL; Yang HW; Sung HW
    J Control Release; 2008 Dec; 132(2):141-9. PubMed ID: 18817821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-trimethyl chitosan chloride-coated PLGA nanoparticles overcoming multiple barriers to oral insulin absorption.
    Sheng J; Han L; Qin J; Ru G; Li R; Wu L; Cui D; Yang P; He Y; Wang J
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15430-41. PubMed ID: 26111015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism study of cellular uptake and tight junction opening mediated by goblet cell-specific trimethyl chitosan nanoparticles.
    Zhang J; Zhu X; Jin Y; Shan W; Huang Y
    Mol Pharm; 2014 May; 11(5):1520-32. PubMed ID: 24673570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium depletion-mediated protease inhibition and apical-junctional-complex disassembly via an EGTA-conjugated carrier for oral insulin delivery.
    Chuang EY; Lin KJ; Su FY; Chen HL; Maiti B; Ho YC; Yen TC; Panda N; Sung HW
    J Control Release; 2013 Aug; 169(3):296-305. PubMed ID: 23195534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyglutamic acid-trimethyl chitosan-based intranasal peptide nano-vaccine induces potent immune responses against group A streptococcus.
    Nevagi RJ; Khalil ZG; Hussein WM; Powell J; Batzloff MR; Capon RJ; Good MF; Skwarczynski M; Toth I
    Acta Biomater; 2018 Oct; 80():278-287. PubMed ID: 30266637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery.
    Yin L; Ding J; He C; Cui L; Tang C; Yin C
    Biomaterials; 2009 Oct; 30(29):5691-700. PubMed ID: 19615735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient mucus permeation and tight junction opening by dissociable "mucus-inert" agent coated trimethyl chitosan nanoparticles for oral insulin delivery.
    Liu M; Zhang J; Zhu X; Shan W; Li L; Zhong J; Zhang Z; Huang Y
    J Control Release; 2016 Jan; 222():67-77. PubMed ID: 26686663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lyophilized insulin nanoparticles prepared from quaternized N-aryl derivatives of chitosan as a new strategy for oral delivery of insulin: in vitro, ex vivo and in vivo characterizations.
    Mahjub R; Radmehr M; Dorkoosh FA; Ostad SN; Rafiee-Tehrani M
    Drug Dev Ind Pharm; 2014 Dec; 40(12):1645-59. PubMed ID: 24093431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery.
    Lin YH; Mi FL; Chen CT; Chang WC; Peng SF; Liang HF; Sung HW
    Biomacromolecules; 2007 Jan; 8(1):146-52. PubMed ID: 17206800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer-based nanoparticles for oral insulin delivery: Revisited approaches.
    Fonte P; Araújo F; Silva C; Pereira C; Reis S; Santos HA; Sarmento B
    Biotechnol Adv; 2015 Nov; 33(6 Pt 3):1342-54. PubMed ID: 25728065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified nanoparticles with cell-penetrating peptide and amphipathic chitosan derivative for enhanced oral colon absorption of insulin: preparation and evaluation.
    Guo F; Zhang M; Gao Y; Zhu S; Chen S; Liu W; Zhong H; Liu J
    Drug Deliv; 2016 Jul; 23(6):2003-14. PubMed ID: 26181840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel ligand conjugated nanoparticles for oral insulin delivery.
    Liu C; Shan W; Liu M; Zhu X; Xu J; Xu Y; Huang Y
    Drug Deliv; 2016 Jul; 23(6):2015-25. PubMed ID: 26203690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cp1-11 peptide/insulin complex loaded pH-responsive nanoparticles with enhanced oral bioactivity.
    Chen X; Ren Y; Feng Y; Xu X; Tan H; Li J
    Int J Pharm; 2019 May; 562():23-30. PubMed ID: 30877031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: from mechanism to therapeutic applications.
    Sung HW; Sonaje K; Liao ZX; Hsu LW; Chuang EY
    Acc Chem Res; 2012 Apr; 45(4):619-29. PubMed ID: 22236133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Peroral Delivery of Insulin via Vitamin B12 Modified Trimethyl Chitosan Nanoparticles.
    Ke Z; Guo H; Zhu X; Jin Y; Huang Y
    J Pharm Pharm Sci; 2015; 18(2):155-70. PubMed ID: 26158281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.