These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26401602)

  • 1. Adding the 'heart' to hanging drop networks for microphysiological multi-tissue experiments.
    Rismani Yazdi S; Shadmani A; Bürgel SC; Misun PM; Hierlemann A; Frey O
    Lab Chip; 2015 Nov; 15(21):4138-47. PubMed ID: 26401602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seamless Combination of Fluorescence-Activated Cell Sorting and Hanging-Drop Networks for Individual Handling and Culturing of Stem Cells and Microtissue Spheroids.
    Birchler A; Berger M; Jäggin V; Lopes T; Etzrodt M; Misun PM; Pena-Francesch M; Schroeder T; Hierlemann A; Frey O
    Anal Chem; 2016 Jan; 88(2):1222-9. PubMed ID: 26694967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling bead and cell mobility in a recirculating hanging-drop network.
    Rousset N; de Geus M; Chimisso V; Kaestli AJ; Hierlemann A; Lohasz C
    Lab Chip; 2023 Nov; 23(22):4834-4847. PubMed ID: 37853793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis.
    Frey O; Misun PM; Fluri DA; Hengstler JG; Hierlemann A
    Nat Commun; 2014 Jun; 5():4250. PubMed ID: 24977495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and Operation of Microfluidic Hanging-Drop Networks.
    Misun PM; Birchler AK; Lang M; Hierlemann A; Frey O
    Methods Mol Biol; 2018; 1771():183-202. PubMed ID: 29633214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-analyte biosensor interface for real-time monitoring of 3D microtissue spheroids in hanging-drop networks.
    Misun PM; Rothe J; Schmid YRF; Hierlemann A; Frey O
    Microsyst Nanoeng; 2016; 2():16022. PubMed ID: 31057823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic circulatory system integrated with capillary-assisted pressure sensors.
    Chen Y; Chan HN; Michael SA; Shen Y; Chen Y; Tian Q; Huang L; Wu H
    Lab Chip; 2017 Feb; 17(4):653-662. PubMed ID: 28112765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical Impedance Spectroscopy for Microtissue Spheroid Analysis in Hanging-Drop Networks.
    Schmid YRF; Bürgel SC; Misun PM; Hierlemann A; Frey O
    ACS Sens; 2016 Jul; 1(8):1028-1035. PubMed ID: 33851029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible thermo-pneumatic valves on centrifugal microfluidic platforms.
    Aeinehvand MM; Ibrahim F; Harun SW; Kazemzadeh A; Rothan HA; Yusof R; Madou M
    Lab Chip; 2015 Aug; 15(16):3358-69. PubMed ID: 26158597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D spherical microtissues and microfluidic technology for multi-tissue experiments and analysis.
    Kim JY; Fluri DA; Marchan R; Boonen K; Mohanty S; Singh P; Hammad S; Landuyt B; Hengstler JG; Kelm JM; Hierlemann A; Frey O
    J Biotechnol; 2015 Jul; 205():24-35. PubMed ID: 25592049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active microdroplet merging by hydrodynamic flow control using a pneumatic actuator-assisted pillar structure.
    Yoon DH; Jamshaid A; Ito J; Nakahara A; Tanaka D; Akitsu T; Sekiguchi T; Shoji S
    Lab Chip; 2014 Aug; 14(16):3050-5. PubMed ID: 24961178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays.
    Hsu YH; Moya ML; Hughes CC; George SC; Lee AP
    Lab Chip; 2013 Aug; 13(15):2990-8. PubMed ID: 23723013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bubble pump: scalable strategy for in-plane liquid routing.
    Oskooei A; Günther A
    Lab Chip; 2015 Jul; 15(13):2842-53. PubMed ID: 26016773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic channel-integrated hanging drop array chip operated by pushbuttons for spheroid culture and analysis.
    Park J; Kim H; Park JK
    Analyst; 2020 Oct; 145(21):6974-6980. PubMed ID: 32857069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-throughput multi-organ-on-a-chip system on a plate formatted pneumatic pressure-driven medium circulation platform.
    Satoh T; Sugiura S; Shin K; Onuki-Nagasaki R; Ishida S; Kikuchi K; Kakiki M; Kanamori T
    Lab Chip; 2017 Dec; 18(1):115-125. PubMed ID: 29184959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues.
    Marsano A; Conficconi C; Lemme M; Occhetta P; Gaudiello E; Votta E; Cerino G; Redaelli A; Rasponi M
    Lab Chip; 2016 Feb; 16(3):599-610. PubMed ID: 26758922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A superhydrophobic chip integrated with an array of medium reservoirs for long-term hanging drop spheroid culture.
    Sun B; Zhao Y; Wu W; Zhao Q; Li G
    Acta Biomater; 2021 Nov; 135():234-242. PubMed ID: 34389482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.