These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 26401917)

  • 1. Directed evolution of artificial enzymes (XNAzymes) from diverse repertoires of synthetic genetic polymers.
    Taylor AI; Holliger P
    Nat Protoc; 2015 Oct; 10(10):1625-42. PubMed ID: 26401917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalysts from synthetic genetic polymers.
    Taylor AI; Pinheiro VB; Smola MJ; Morgunov AS; Peak-Chew S; Cozens C; Weeks KM; Herdewijn P; Holliger P
    Nature; 2015 Feb; 518(7539):427-30. PubMed ID: 25470036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selecting Fully-Modified XNA Aptamers Using Synthetic Genetics.
    Taylor AI; Holliger P
    Curr Protoc Chem Biol; 2018 Jun; 10(2):e44. PubMed ID: 29927117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional Comparison of Laboratory-Evolved XNA Polymerases for Synthetic Biology.
    Medina E; Yik EJ; Herdewijn P; Chaput JC
    ACS Synth Biol; 2021 Jun; 10(6):1429-1437. PubMed ID: 34029459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redesigning the Genetic Polymers of Life.
    Chaput JC
    Acc Chem Res; 2021 Feb; 54(4):1056-1065. PubMed ID: 33533593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery and evolution of RNA and XNA reverse transcriptase function and fidelity.
    Houlihan G; Arangundy-Franklin S; Porebski BT; Subramanian N; Taylor AI; Holliger P
    Nat Chem; 2020 Aug; 12(8):683-690. PubMed ID: 32690899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyamines promote xenobiotic nucleic acid synthesis by modified thermophilic polymerase mutants.
    Hoshino H; Kasahara Y; Obika S
    RSC Chem Biol; 2024 May; 5(5):467-472. PubMed ID: 38725908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering polymerases for applications in synthetic biology.
    Nikoomanzar A; Chim N; Yik EJ; Chaput JC
    Q Rev Biophys; 2020 Jul; 53():e8. PubMed ID: 32715992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compartmentalized Self-Tagging for In Vitro-Directed Evolution of XNA Polymerases.
    Pinheiro VB; Arangundy-Franklin S; Holliger P
    Curr Protoc Nucleic Acid Chem; 2014 Jun; 57():9.9.1-18. PubMed ID: 24961724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructures from Synthetic Genetic Polymers.
    Taylor AI; Beuron F; Peak-Chew SY; Morris EP; Herdewijn P; Holliger P
    Chembiochem; 2016 Jun; 17(12):1107-10. PubMed ID: 26992063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A modular XNAzyme cleaves long, structured RNAs under physiological conditions and enables allele-specific gene silencing.
    Taylor AI; Wan CJK; Donde MJ; Peak-Chew SY; Holliger P
    Nat Chem; 2022 Nov; 14(11):1295-1305. PubMed ID: 36064973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of 8-17 XNAzymes that are functional in cells.
    Chiba K; Yamaguchi T; Obika S
    Chem Sci; 2023 Jul; 14(28):7620-7629. PubMed ID: 37476720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering TNA polymerases through iterative cycles of directed evolution.
    Yik EJ; Maola VA; Chaput JC
    Methods Enzymol; 2023; 691():29-59. PubMed ID: 37914450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Parallelized Screening of Functionally Enhanced XNA Aptamers in Uniform Hydrogel Particles.
    Yik EJ; Medina E; Paegel BM; Chaput JC
    ACS Synth Biol; 2023 Jul; 12(7):2127-2134. PubMed ID: 37410977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting non-coding RNA family members with artificial endonuclease XNAzymes.
    Donde MJ; Rochussen AM; Kapoor S; Taylor AI
    Commun Biol; 2022 Sep; 5(1):1010. PubMed ID: 36153384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. XNAzymes targeting the SARS-CoV-2 genome inhibit viral infection.
    Gerber PP; Donde MJ; Matheson NJ; Taylor AI
    Nat Commun; 2022 Nov; 13(1):6716. PubMed ID: 36385143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro selection of DNA-based aptamers that exhibit RNA-like conformations using a chimeric oligonucleotide library that contains two different xeno-nucleic acids.
    Hagiwara K; Fujita H; Kasahara Y; Irisawa Y; Obika S; Kuwahara M
    Mol Biosyst; 2015 Jan; 11(1):71-6. PubMed ID: 25325213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins.
    Vanmeert M; Razzokov J; Mirza MU; Weeks SD; Schepers G; Bogaerts A; Rozenski J; Froeyen M; Herdewijn P; Pinheiro VB; Lescrinier E
    Nucleic Acids Res; 2019 Jul; 47(13):7130-7142. PubMed ID: 31334814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient transfer of information from hexitol nucleic acids to RNA during nonenzymatic oligomerization.
    Kozlov IA; De Bouvere B; Van Aerschot A; Herdewijn P; Orgel LE
    J Am Chem Soc; 1999; 121(25):5856-9. PubMed ID: 11542282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modified Nucleic Acids: Expanding the Capabilities of Functional Oligonucleotides.
    Ochoa S; Milam VT
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33066073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.