These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects. Xue M; Zhang Z; Zhu N; Wang F; Zhao XS; Cao T Langmuir; 2009 Apr; 25(8):4347-51. PubMed ID: 19320428 [TBL] [Abstract][Full Text] [Related]
5. Electrospun nanofibrous membranes surface-decorated with silver nanoparticles as flexible and active/sensitive substrates for surface-enhanced Raman scattering. Zhang L; Gong X; Bao Y; Zhao Y; Xi M; Jiang C; Fong H Langmuir; 2012 Oct; 28(40):14433-40. PubMed ID: 22974488 [TBL] [Abstract][Full Text] [Related]
6. Shape control of Ag nanostructures for practical SERS substrates. Jeon TY; Park SG; Lee SY; Jeon HC; Yang SM ACS Appl Mater Interfaces; 2013 Jan; 5(2):243-8. PubMed ID: 23281631 [TBL] [Abstract][Full Text] [Related]
7. The controlled pulsed laser deposition of Ag nanoparticle arrays for surface enhanced Raman scattering. D'Andrea C; Neri F; Ossi PM; Santo N; Trusso S Nanotechnology; 2009 Jun; 20(24):245606. PubMed ID: 19471080 [TBL] [Abstract][Full Text] [Related]
11. Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing. Abu Hatab NA; Oran JM; Sepaniak MJ ACS Nano; 2008 Feb; 2(2):377-85. PubMed ID: 19206640 [TBL] [Abstract][Full Text] [Related]
12. Bimetallic gold-silver nanoplate array as a highly active SERS substrate for detection of streptavidin/biotin assemblies. Bi L; Dong J; Xie W; Lu W; Tong W; Tao L; Qian W Anal Chim Acta; 2013 Dec; 805():95-100. PubMed ID: 24296148 [TBL] [Abstract][Full Text] [Related]
13. Nanofabrication of densely packed metal-polymer arrays for surface-enhanced Raman spectrometry. De Jesús MA; Giesfeldt KS; Oran JM; Abu-Hatab NA; Lavrik NV; Sepaniak MJ Appl Spectrosc; 2005 Dec; 59(12):1501-8. PubMed ID: 16390590 [TBL] [Abstract][Full Text] [Related]
14. 3D silver nanoparticles decorated zinc oxide/silicon heterostructured nanomace arrays as high-performance surface-enhanced Raman scattering substrates. Huang J; Chen F; Zhang Q; Zhan Y; Ma D; Xu K; Zhao Y ACS Appl Mater Interfaces; 2015 Mar; 7(10):5725-35. PubMed ID: 25731067 [TBL] [Abstract][Full Text] [Related]
15. Plasma-induced formation of Ag nanodots for ultra-high-enhancement surface-enhanced Raman scattering substrates. Li Z; Tong WM; Stickle WF; Neiman DL; Williams RS; Hunter LL; Talin AA; Li D; Brueck SR Langmuir; 2007 Apr; 23(9):5135-8. PubMed ID: 17385901 [TBL] [Abstract][Full Text] [Related]
16. Facile in Situ Synthesis of Silver Nanoparticles on the Surface of Metal-Organic Framework for Ultrasensitive Surface-Enhanced Raman Scattering Detection of Dopamine. Jiang Z; Gao P; Yang L; Huang C; Li Y Anal Chem; 2015 Dec; 87(24):12177-82. PubMed ID: 26575213 [TBL] [Abstract][Full Text] [Related]
17. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods. Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546 [TBL] [Abstract][Full Text] [Related]
18. SERS detection of low-concentration adenine by a patterned silver structure immersion plated on a silicon nanoporous pillar array. Feng F; Zhi G; Jia HS; Cheng L; Tian YT; Li XJ Nanotechnology; 2009 Jul; 20(29):295501. PubMed ID: 19567965 [TBL] [Abstract][Full Text] [Related]