These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 26402220)
1. Extended Coverage of Singly and Multiply Phosphorylated Peptides from a Single Titanium Dioxide Microcolumn. Wakabayashi M; Kyono Y; Sugiyama N; Ishihama Y Anal Chem; 2015 Oct; 87(20):10213-21. PubMed ID: 26402220 [TBL] [Abstract][Full Text] [Related]
2. Successive and selective release of phosphorylated peptides captured by hydroxy acid-modified metal oxide chromatography. Kyono Y; Sugiyama N; Imami K; Tomita M; Ishihama Y J Proteome Res; 2008 Oct; 7(10):4585-93. PubMed ID: 18767875 [TBL] [Abstract][Full Text] [Related]
3. Sequential enrichment of singly- and multiply-phosphorylated peptides with zwitterionic hydrophilic interaction chromatography material. Sheng Q; Yang K; Xue X; Li X; Guo Z; Shen A; Ke Y; Lan M; Liang X J Chromatogr A; 2015 Sep; 1413():47-59. PubMed ID: 26298604 [TBL] [Abstract][Full Text] [Related]
4. Improving the Phosphoproteome Coverage for Limited Sample Amounts Using TiO2-SIMAC-HILIC (TiSH) Phosphopeptide Enrichment and Fractionation. Engholm-Keller K; Larsen MR Methods Mol Biol; 2016; 1355():161-77. PubMed ID: 26584925 [TBL] [Abstract][Full Text] [Related]
5. SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Thingholm TE; Jensen ON; Robinson PJ; Larsen MR Mol Cell Proteomics; 2008 Apr; 7(4):661-71. PubMed ID: 18039691 [TBL] [Abstract][Full Text] [Related]
6. Enrichment and separation of mono- and multiply phosphorylated peptides using sequential elution from IMAC prior to mass spectrometric analysis. Thingholm TE; Jensen ON; Larsen MR Methods Mol Biol; 2009; 527():67-78, xi. PubMed ID: 19241006 [TBL] [Abstract][Full Text] [Related]
7. Combinatorial use of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) and strong cation exchange (SCX) chromatography for in-depth phosphoproteome analysis. Zarei M; Sprenger A; Gretzmeier C; Dengjel J J Proteome Res; 2012 Aug; 11(8):4269-76. PubMed ID: 22768876 [TBL] [Abstract][Full Text] [Related]
8. Chemical dephosphorylation for identification of multiply phosphorylated peptides and phosphorylation site determination. Kyono Y; Sugiyama N; Tomita M; Ishihama Y Rapid Commun Mass Spectrom; 2010 Aug; 24(15):2277-82. PubMed ID: 20623713 [TBL] [Abstract][Full Text] [Related]
10. Titanium dioxide as a chemo-affinity solid phase in offline phosphopeptide chromatography prior to HPLC-MS/MS analysis. Mazanek M; Mituloviae G; Herzog F; Stingl C; Hutchins JR; Peters JM; Mechtler K Nat Protoc; 2007; 2(5):1059-69. PubMed ID: 17545998 [TBL] [Abstract][Full Text] [Related]
11. Nanodiamond-based two-step sampling of multiply and singly phosphorylated peptides for MALDI-TOF mass spectrometry analysis. Shiau KJ; Hung SU; Lee HW; Wu CC Analyst; 2011 May; 136(9):1922-7. PubMed ID: 21403954 [TBL] [Abstract][Full Text] [Related]
12. Complementary Fe(3+)- and Ti(4+)-immobilized metal ion affinity chromatography for purification of acidic and basic phosphopeptides. Lai AC; Tsai CF; Hsu CC; Sun YN; Chen YJ Rapid Commun Mass Spectrom; 2012 Sep; 26(18):2186-94. PubMed ID: 22886815 [TBL] [Abstract][Full Text] [Related]
13. Improved enrichment strategies for phosphorylated peptides on titanium dioxide using methyl esterification and pH gradient elution. Simon ES; Young M; Chan A; Bao ZQ; Andrews PC Anal Biochem; 2008 Jun; 377(2):234-42. PubMed ID: 18396144 [TBL] [Abstract][Full Text] [Related]
14. Hydroxyapatite affinity chromatography for the highly selective enrichment of mono- and multi-phosphorylated peptides in phosphoproteome analysis. Mamone G; Picariello G; Ferranti P; Addeo F Proteomics; 2010 Feb; 10(3):380-93. PubMed ID: 19953538 [TBL] [Abstract][Full Text] [Related]
15. Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Kweon HK; Håkansson K Anal Chem; 2006 Mar; 78(6):1743-9. PubMed ID: 16536406 [TBL] [Abstract][Full Text] [Related]
16. Effect of peptide-to-TiO2 beads ratio on phosphopeptide enrichment selectivity. Li QR; Ning ZB; Tang JS; Nie S; Zeng R J Proteome Res; 2009 Nov; 8(11):5375-81. PubMed ID: 19761217 [TBL] [Abstract][Full Text] [Related]
17. Nanoprobe-based immobilized metal affinity chromatography for sensitive and complementary enrichment of multiply phosphorylated peptides. Wu HT; Hsu CC; Tsai CF; Lin PC; Lin CC; Chen YJ Proteomics; 2011 Jul; 11(13):2639-53. PubMed ID: 21630456 [TBL] [Abstract][Full Text] [Related]
19. Comprehensive protocol to simultaneously study protein phosphorylation, acetylation, and N-linked sialylated glycosylation. Melo-Braga MN; Ibáñez-Vea M; Larsen MR; Kulej K Methods Mol Biol; 2015; 1295():275-92. PubMed ID: 25820729 [TBL] [Abstract][Full Text] [Related]
20. Hydrophilic modification of titania nanomaterials as a biofunctional adsorbent for selective enrichment of phosphopeptides. Liu H; Yang T; Dai J; Zhu J; Li X; Wen R; Yang X Analyst; 2015 Oct; 140(19):6652-9. PubMed ID: 26299437 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]