BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 26402456)

  • 1. Deployment of a retinal determination gene network drives directed cell migration in the sea urchin embryo.
    Martik ML; McClay DR
    Elife; 2015 Sep; 4():. PubMed ID: 26402456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins.
    Rafiq K; Shashikant T; McManus CJ; Ettensohn CA
    Development; 2014 Feb; 141(4):950-61. PubMed ID: 24496631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos.
    McCauley BS; Weideman EP; Hinman VF
    Dev Biol; 2010 Apr; 340(2):200-8. PubMed ID: 19941847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimentally based sea urchin gene regulatory network and the causal explanation of developmental phenomenology.
    Ben-Tabou de-Leon S; Davidson EH
    Wiley Interdiscip Rev Syst Biol Med; 2009; 1(2):237-246. PubMed ID: 20228891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Encoding anatomy: developmental gene regulatory networks and morphogenesis.
    Ettensohn CA
    Genesis; 2013 Jun; 51(6):383-409. PubMed ID: 23436627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methods for the experimental and computational analysis of gene regulatory networks in sea urchins.
    Peter IS
    Methods Cell Biol; 2019; 151():89-113. PubMed ID: 30948033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The genomic regulatory control of skeletal morphogenesis in the sea urchin.
    Rafiq K; Cheers MS; Ettensohn CA
    Development; 2012 Feb; 139(3):579-90. PubMed ID: 22190640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network.
    Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T
    Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modularity and design principles in the sea urchin embryo gene regulatory network.
    Peter IS; Davidson EH
    FEBS Lett; 2009 Dec; 583(24):3948-58. PubMed ID: 19932099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing regulatory information in developmental gene regulatory networks.
    Peter IS; Davidson EH
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):5862-5869. PubMed ID: 28584110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The gene regulatory control of sea urchin gastrulation.
    Ettensohn CA
    Mech Dev; 2020 Jun; 162():103599. PubMed ID: 32119908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres.
    Revilla-i-Domingo R; Oliveri P; Davidson EH
    Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12383-8. PubMed ID: 17636127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caught in the evolutionary act: precise cis-regulatory basis of difference in the organization of gene networks of sea stars and sea urchins.
    Hinman VF; Nguyen A; Davidson EH
    Dev Biol; 2007 Dec; 312(2):584-95. PubMed ID: 17956756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulative deployment of the skeletogenic gene regulatory network during sea urchin development.
    Sharma T; Ettensohn CA
    Development; 2011 Jun; 138(12):2581-90. PubMed ID: 21610034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific functions of the Wnt signaling system in gene regulatory networks throughout the early sea urchin embryo.
    Cui M; Siriwon N; Li E; Davidson EH; Peter IS
    Proc Natl Acad Sci U S A; 2014 Nov; 111(47):E5029-38. PubMed ID: 25385617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The surprising complexity of the transcriptional regulation of the spdri gene reveals the existence of new linkages inside sea urchin's PMC and Oral Ectoderm Gene Regulatory Networks.
    Mahmud AA; Amore G
    Dev Biol; 2008 Oct; 322(2):425-34. PubMed ID: 18718463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A gene regulatory network subcircuit drives a dynamic pattern of gene expression.
    Smith J; Theodoris C; Davidson EH
    Science; 2007 Nov; 318(5851):794-7. PubMed ID: 17975065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A genomic regulatory network for development.
    Davidson EH; Rast JP; Oliveri P; Ransick A; Calestani C; Yuh CH; Minokawa T; Amore G; Hinman V; Arenas-Mena C; Otim O; Brown CT; Livi CB; Lee PY; Revilla R; Rust AG; Pan Zj; Schilstra MJ; Clarke PJ; Arnone MI; Rowen L; Cameron RA; McClay DR; Hood L; Bolouri H
    Science; 2002 Mar; 295(5560):1669-78. PubMed ID: 11872831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulative recovery in the sea urchin embryo and the stabilizing role of fail-safe gene network wiring.
    Smith J; Davidson EH
    Proc Natl Acad Sci U S A; 2009 Oct; 106(43):18291-6. PubMed ID: 19822764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.