BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 26402459)

  • 1. Hippocampome.org: a knowledge base of neuron types in the rodent hippocampus.
    Wheeler DW; White CM; Rees CL; Komendantov AO; Hamilton DJ; Ascoli GA
    Elife; 2015 Sep; 4():. PubMed ID: 26402459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive Estimates of Potential Synaptic Connections in Local Circuits of the Rodent Hippocampal Formation by Axonal-Dendritic Overlap.
    Tecuatl C; Wheeler DW; Sutton N; Ascoli GA
    J Neurosci; 2021 Feb; 41(8):1665-1683. PubMed ID: 33361464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive knowledge base of synaptic electrophysiology in the rodent hippocampal formation.
    Moradi K; Ascoli GA
    Hippocampus; 2020 Apr; 30(4):314-331. PubMed ID: 31472001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hippocampome.org 2.0 is a knowledge base enabling data-driven spiking neural network simulations of rodent hippocampal circuits.
    Wheeler DW; Kopsick JD; Sutton N; Tecuatl C; Komendantov AO; Nadella K; Ascoli GA
    Elife; 2024 Feb; 12():. PubMed ID: 38345923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of neuron types in the rodent hippocampal formation by data mining and numerical optimization.
    Attili SM; Moradi K; Wheeler DW; Ascoli GA
    Eur J Neurosci; 2022 Apr; 55(7):1724-1741. PubMed ID: 35301768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular expression profiles of morphologically defined hippocampal neuron types: Empirical evidence and relational inferences.
    White CM; Rees CL; Wheeler DW; Hamilton DJ; Ascoli GA
    Hippocampus; 2020 May; 30(5):472-487. PubMed ID: 31596053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular fingerprinting of principal neurons in the rodent hippocampus: A neuroinformatics approach.
    Hamilton DJ; White CM; Rees CL; Wheeler DW; Ascoli GA
    J Pharm Biomed Anal; 2017 Sep; 144():269-278. PubMed ID: 28549853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hippocampome.org v2.0: a knowledge base enabling data-driven spiking neural network simulations of rodent hippocampal circuits.
    Wheeler DW; Kopsick JD; Sutton N; Tecuatl C; Komendantov AO; Nadella K; Ascoli GA
    bioRxiv; 2024 Jan; ():. PubMed ID: 37425693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Name-calling in the hippocampus (and beyond): coming to terms with neuron types and properties.
    Hamilton DJ; Wheeler DW; White CM; Rees CL; Komendantov AO; Bergamino M; Ascoli GA
    Brain Inform; 2017 Mar; 4(1):1-12. PubMed ID: 27747821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graph Theoretic and Motif Analyses of the Hippocampal Neuron Type Potential Connectome.
    Rees CL; Wheeler DW; Hamilton DJ; White CM; Komendantov AO; Ascoli GA
    eNeuro; 2016; 3(6):. PubMed ID: 27896314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex.
    Witter MP; Amaral DG
    J Comp Neurol; 1991 May; 307(3):437-59. PubMed ID: 1713237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative firing pattern phenotyping of hippocampal neuron types.
    Komendantov AO; Venkadesh S; Rees CL; Wheeler DW; Hamilton DJ; Ascoli GA
    Sci Rep; 2019 Nov; 9(1):17915. PubMed ID: 31784578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connectional specification of regenerating entorhinal projection neuron classes cannot be overridden by altered target availability in postnatal organotypic slice co-culture.
    Li D; Field PM; Raisman G
    Exp Neurol; 1996 Nov; 142(1):151-60. PubMed ID: 8912906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of perforant path neurons to field CA1 by hippocampal projections.
    Bartesaghi R; Gessi T
    Hippocampus; 2003; 13(2):235-49. PubMed ID: 12699331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of early isolation on signal transfer in the entorhinal cortex-dentate-hippocampal system.
    Bartesaghi R; Raffi M; Ciani E
    Neuroscience; 2006 Feb; 137(3):875-90. PubMed ID: 16325342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Continuous Attractor Model with Realistic Neural and Synaptic Properties Quantitatively Reproduces Grid Cell Physiology.
    Sutton N; Gutiérrez-Guzmán B; Dannenberg H; Ascoli GA
    bioRxiv; 2024 May; ():. PubMed ID: 38746202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple models of quantitative firing phenotypes in hippocampal neurons: Comprehensive coverage of intrinsic diversity.
    Venkadesh S; Komendantov AO; Wheeler DW; Hamilton DJ; Ascoli GA
    PLoS Comput Biol; 2019 Oct; 15(10):e1007462. PubMed ID: 31658260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust Resting-State Dynamics in a Large-Scale Spiking Neural Network Model of Area CA3 in the Mouse Hippocampus.
    Kopsick JD; Tecuatl C; Moradi K; Attili SM; Kashyap HJ; Xing J; Chen K; Krichmar JL; Ascoli GA
    Cognit Comput; 2023 Jul; 15(4):1190-1210. PubMed ID: 37663748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The entorhinal cortex of the mouse: organization of the projection to the hippocampal formation.
    van Groen T; Miettinen P; Kadish I
    Hippocampus; 2003; 13(1):133-49. PubMed ID: 12625464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Input-output relations in the entorhinal cortex-dentate-hippocampal system: evidence for a non-linear transfer of signals.
    Bartesaghi R; Migliore M; Gessi T
    Neuroscience; 2006 Sep; 142(1):247-65. PubMed ID: 16844310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.