These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 26402581)

  • 1. On the Nature of an Extended Stokes Shift in the mPlum Fluorescent Protein.
    Faraji S; Krylov AI
    J Phys Chem B; 2015 Oct; 119(41):13052-62. PubMed ID: 26402581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Far-Red Emission of mPlum Fluorescent Protein Results from Excited-State Interconversion between Chromophore Hydrogen-Bonding States.
    Yoon E; Konold PE; Lee J; Joo T; Jimenez R
    J Phys Chem Lett; 2016 Jun; 7(12):2170-4. PubMed ID: 27214167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast proton shuttling in Psammocora cyan fluorescent protein.
    Kennis JT; van Stokkum IH; Peterson DS; Pandit A; Wachter RM
    J Phys Chem B; 2013 Sep; 117(38):11134-43. PubMed ID: 23534404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-Dependent Fluorescence of mPlum Fluorescent Protein from 295 to 20 K.
    Lyu T; Sohn SH; Jimenez R; Joo T
    J Phys Chem B; 2022 Mar; 126(12):2337-2344. PubMed ID: 35296137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen bond flexibility correlates with Stokes shift in mPlum variants.
    Konold P; Regmi CK; Chapagain PP; Gerstman BS; Jimenez R
    J Phys Chem B; 2014 Mar; 118(11):2940-8. PubMed ID: 24611679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excited State Electronic Interconversion and Structural Transformation of Engineered Red-Emitting Green Fluorescent Protein Mutant.
    Augustine G; Raghavan S; NumbiRamudu K; Easwaramoorthi S; Shanmugam G; Seetharani Murugaiyan J; Gunasekaran K; Govind C; Karunakaran V; Ayyadurai N
    J Phys Chem B; 2019 Mar; 123(10):2316-2324. PubMed ID: 30789731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique interactions between the chromophore and glutamate 16 lead to far-red emission in a red fluorescent protein.
    Shu X; Wang L; Colip L; Kallio K; Remington SJ
    Protein Sci; 2009 Feb; 18(2):460-6. PubMed ID: 19165727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum chemistry behind bioimaging: insights from ab initio studies of fluorescent proteins and their chromophores.
    Bravaya KB; Grigorenko BL; Nemukhin AV; Krylov AI
    Acc Chem Res; 2012 Feb; 45(2):265-75. PubMed ID: 21882809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Far Red Fluorescent Proteins: Where Is the Limit of the Acylimine Chromophore?
    Moron V; Marazzi M; Wanko M
    J Chem Theory Comput; 2019 Jul; 15(7):4228-4240. PubMed ID: 31146524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular modeling of green fluorescent protein: structural effects of chromophore deprotonation.
    Patnaik SS; Trohalaki S; Pachter R
    Biopolymers; 2004 Dec; 75(6):441-52. PubMed ID: 15497152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence from Multiple Chromophore Hydrogen-Bonding States in the Far-Red Protein TagRFP675.
    Konold PE; Yoon E; Lee J; Allen SL; Chapagain PP; Gerstman BS; Regmi CK; Piatkevich KD; Verkhusha VV; Joo T; Jimenez R
    J Phys Chem Lett; 2016 Aug; 7(15):3046-51. PubMed ID: 27447848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excited-State Intramolecular Proton Transfer in a Blue Fluorescence Chromophore Induces Dual Emission.
    Wu D; Guo WW; Liu XY; Cui G
    Chemphyschem; 2016 Aug; 17(15):2340-7. PubMed ID: 27128380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of protein environment on electronically excited and ionized states of the green fluorescent protein chromophore.
    Bravaya KB; Khrenova MG; Grigorenko BL; Nemukhin AV; Krylov AI
    J Phys Chem B; 2011 Jun; 115(25):8296-303. PubMed ID: 21591720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Stokes shift in green fluorescent protein variants.
    Abbyad P; Childs W; Shi X; Boxer SG
    Proc Natl Acad Sci U S A; 2007 Dec; 104(51):20189-94. PubMed ID: 18077381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromophore-protein coupling beyond nonpolarizable models: understanding absorption in green fluorescent protein.
    Daday C; Curutchet C; Sinicropi A; Mennucci B; Filippi C
    J Chem Theory Comput; 2015 Oct; 11(10):4825-39. PubMed ID: 26574271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the Environment on Shaping the Absorption of Monomeric Infrared Fluorescent Proteins.
    Rathnachalam S; Menger MFSJ; Faraji S
    J Phys Chem B; 2021 Mar; 125(9):2231-2240. PubMed ID: 33626280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient low-barrier hydrogen bond in the photoactive state of green fluorescent protein.
    Nadal-Ferret M; Gelabert R; Moreno M; Lluch JM
    Phys Chem Chem Phys; 2015 Dec; 17(46):30876-88. PubMed ID: 25953497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent effect on electronic absorption, fluorescence, and phosphorescence of acetone in water: revisited by quantum mechanics/molecular mechanics (QM/MM) simulations.
    Ma H; Ma Y
    J Chem Phys; 2013 Jun; 138(22):224505. PubMed ID: 23781803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational study of the absorption spectra of green fluorescent protein mutants.
    Patnaik SS; Trohalaki S; Naik RR; Stone MO; Pachter R
    Biopolymers; 2007 Feb; 85(3):253-63. PubMed ID: 17206623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Light-Induced Reaction with Oxygen Leads to Chromophore Decomposition and Irreversible Photobleaching in GFP-Type Proteins.
    Grigorenko BL; Nemukhin AV; Polyakov IV; Khrenova MG; Krylov AI
    J Phys Chem B; 2015 Apr; 119(17):5444-52. PubMed ID: 25867185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.