These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26402608)

  • 1. Stochastic Interaction between Neural Activity and Molecular Cues in the Formation of Topographic Maps.
    Owens MT; Feldheim DA; Stryker MP; Triplett JW
    Neuron; 2015 Sep; 87(6):1261-1273. PubMed ID: 26402608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sperry versus Hebb: topographic mapping in Isl2/EphA3 mutant mice.
    Tsigankov D; Koulakov AA
    BMC Neurosci; 2010 Dec; 11():155. PubMed ID: 21190559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual Neurons in the Superior Colliculus Innervated by Islet2
    Kay RB; Triplett JW
    Front Neural Circuits; 2017; 11():73. PubMed ID: 29066954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superior Colliculus Does Play Dice.
    Kerschensteiner D
    Neuron; 2015 Sep; 87(6):1121-1123. PubMed ID: 26402595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for an instructive role of retinal activity in retinotopic map refinement in the superior colliculus of the mouse.
    Chandrasekaran AR; Plas DT; Gonzalez E; Crair MC
    J Neurosci; 2005 Jul; 25(29):6929-38. PubMed ID: 16033903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A stochastic model for retinocollicular map development.
    Koulakov AA; Tsigankov DN
    BMC Neurosci; 2004 Aug; 5():30. PubMed ID: 15339341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reanalysis of EphA3 Knock-In Double Maps in Mouse Suggests That Stochasticity in Topographic Map Formation Acts at the Retina Rather than between Competing Mechanisms at the Colliculus.
    Willshaw DJ; Gale NM
    eNeuro; 2023 Nov; 10(11):. PubMed ID: 37852780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A molecular mechanism for the topographic alignment of convergent neural maps.
    Savier E; Eglen SJ; Bathélémy A; Perraut M; Pfrieger FW; Lemke G; Reber M
    Elife; 2017 Mar; 6():. PubMed ID: 28322188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ephrin-As are required for the topographic mapping but not laminar choice of physiologically distinct RGC types.
    Sweeney NT; James KN; Sales EC; Feldheim DA
    Dev Neurobiol; 2015 Jun; 75(6):584-93. PubMed ID: 25649160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered map of visual space in the superior colliculus of mice lacking early retinal waves.
    Mrsic-Flogel TD; Hofer SB; Creutzfeldt C; Cloëz-Tayarani I; Changeux JP; Bonhoeffer T; Hübener M
    J Neurosci; 2005 Jul; 25(29):6921-8. PubMed ID: 16033902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different roles of axon guidance cues and patterned spontaneous activity in establishing receptive fields in the mouse superior colliculus.
    Liu M; Wang L; Cang J
    Front Neural Circuits; 2014; 8():23. PubMed ID: 24723853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal input instructs alignment of visual topographic maps.
    Triplett JW; Owens MT; Yamada J; Lemke G; Cang J; Stryker MP; Feldheim DA
    Cell; 2009 Oct; 139(1):175-85. PubMed ID: 19804762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A relative signalling model for the formation of a topographic neural map.
    Reber M; Burrola P; Lemke G
    Nature; 2004 Oct; 431(7010):847-53. PubMed ID: 15483613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into activity-dependent map formation from the retinotectal system: a middle-of-the-brain perspective.
    Ruthazer ES; Cline HT
    J Neurobiol; 2004 Apr; 59(1):134-46. PubMed ID: 15007832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defective response inhibition and collicular noradrenaline enrichment in mice with duplicated retinotopic map in the superior colliculus.
    Mathis C; Savier E; Bott JB; Clesse D; Bevins N; Sage-Ciocca D; Geiger K; Gillet A; Laux-Biehlmann A; Goumon Y; Lacaud A; Lelièvre V; Kelche C; Cassel JC; Pfrieger FW; Reber M
    Brain Struct Funct; 2015; 220(3):1573-84. PubMed ID: 24647754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative assessment of computational models for retinotopic map formation.
    Hjorth JJ; Sterratt DC; Cutts CS; Willshaw DJ; Eglen SJ
    Dev Neurobiol; 2015 Jun; 75(6):641-66. PubMed ID: 25367067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phr1 is required for proper retinocollicular targeting of nasal-dorsal retinal ganglion cells.
    Vo BQ; Bloom AJ; Culican SM
    Vis Neurosci; 2011 Mar; 28(2):175-81. PubMed ID: 21324225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of adenylate cyclase 1 in retinofugal map development.
    Dhande OS; Bhatt S; Anishchenko A; Elstrott J; Iwasato T; Swindell EC; Xu HP; Jamrich M; Itohara S; Feller MB; Crair MC
    J Comp Neurol; 2012 May; 520(7):1562-83. PubMed ID: 22102330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity dependent mechanisms of visual map formation--from retinal waves to molecular regulators.
    Assali A; Gaspar P; Rebsam A
    Semin Cell Dev Biol; 2014 Nov; 35():136-46. PubMed ID: 25152335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Models of Visual Topographic Map Alignment in the Superior Colliculus.
    Tikidji-Hamburyan RA; El-Ghazawi TA; Triplett JW
    PLoS Comput Biol; 2016 Dec; 12(12):e1005315. PubMed ID: 28027309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.