These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 26402681)

  • 1. Leveraging Two Kinect Sensors for Accurate Full-Body Motion Capture.
    Gao Z; Yu Y; Zhou Y; Du S
    Sensors (Basel); 2015 Sep; 15(9):24297-317. PubMed ID: 26402681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Markerless motion capture using appearance and inertial data.
    Wong C; Zhang Z; Lo B; Yang GZ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6907-10. PubMed ID: 25571584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a robust and cost-effective 3D respiratory motion monitoring system using the kinect device: Accuracy comparison with the conventional stereovision navigation system.
    Bae M; Lee S; Kim N
    Comput Methods Programs Biomed; 2018 Jul; 160():25-32. PubMed ID: 29728243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A contactless method to measure real-time finger motion using depth-based pose estimation.
    Zhu Y; Lu W; Gan W; Hou W
    Comput Biol Med; 2021 Apr; 131():104282. PubMed ID: 33631496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring accurate body parameters of dressed humans with large-scale motion using a Kinect sensor.
    Xu H; Yu Y; Zhou Y; Li Y; Du S
    Sensors (Basel); 2013 Aug; 13(9):11362-84. PubMed ID: 24064597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy and robustness of Kinect pose estimation in the context of coaching of elderly population.
    Obdrzálek S; Kurillo G; Ofli F; Bajcsy R; Seto E; Jimison H; Pavel M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1188-93. PubMed ID: 23366110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time posture reconstruction for Microsoft Kinect.
    Shum HP; Ho ES; Jiang Y; Takagi S
    IEEE Trans Cybern; 2013 Oct; 43(5):1357-69. PubMed ID: 23981562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exemplar-based human action pose correction.
    Shen W; Deng K; Bai X; Leyvand T; Guo B; Tu Z
    IEEE Trans Cybern; 2014 Jul; 44(7):1053-66. PubMed ID: 24058046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NeuroKinect: A Novel Low-Cost 3Dvideo-EEG System for Epileptic Seizure Motion Quantification.
    Cunha JP; Choupina HM; Rocha AP; Fernandes JM; Achilles F; Loesch AM; Vollmar C; Hartl E; Noachtar S
    PLoS One; 2016; 11(1):e0145669. PubMed ID: 26799795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Pose Estimation from Video and IMUs.
    Marcard Tv; Pons-Moll G; Rosenhahn B
    IEEE Trans Pattern Anal Mach Intell; 2016 Aug; 38(8):1533-47. PubMed ID: 26829774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatio-Temporal Calibration of Multiple Kinect Cameras Using 3D Human Pose.
    Eichler N; Hel-Or H; Shimshoni I
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patient 3D body pose estimation from pressure imaging.
    Casas L; Navab N; Demirci S
    Int J Comput Assist Radiol Surg; 2019 Mar; 14(3):517-524. PubMed ID: 30552647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of a Deep Learning-Based Pose Estimation System to Marker-Based and Kinect Systems in Exergaming for Balance Training.
    Vonstad EK; Su X; Vereijken B; Bach K; Nilsen JH
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33291687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusion Poser: 3D Human Pose Estimation Using Sparse IMUs and Head Trackers in Real Time.
    Kim M; Lee S
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Layered Approach for Robust Spatial Virtual Human Pose Reconstruction Using a Still Image.
    Guo C; Ruan S; Liang X; Zhao Q
    Sensors (Basel); 2016 Feb; 16(2):263. PubMed ID: 26907289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of Full-Body Poses Using Only Five Inertial Sensors: An Eager or Lazy Learning Approach?
    Wouda FJ; Giuberti M; Bellusci G; Veltink PH
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human pose recovery using wireless inertial measurement units.
    Lin JF; Kulić D
    Physiol Meas; 2012 Dec; 33(12):2099-115. PubMed ID: 23174667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Samba: a real-time motion capture system using wireless camera sensor networks.
    Oh H; Cha G; Oh S
    Sensors (Basel); 2014 Mar; 14(3):5516-35. PubMed ID: 24658618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinect and wearable inertial sensors for motor rehabilitation programs at home: state of the art and an experimental comparison.
    Milosevic B; Leardini A; Farella E
    Biomed Eng Online; 2020 Apr; 19(1):25. PubMed ID: 32326957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications and limitations of current markerless motion capture methods for clinical gait biomechanics.
    Wade L; Needham L; McGuigan P; Bilzon J
    PeerJ; 2022; 10():e12995. PubMed ID: 35237469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.