BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 26402847)

  • 1. A phosphopantetheinyl transferase that is essential for mitochondrial fatty acid biosynthesis.
    Guan X; Chen H; Abramson A; Man H; Wu J; Yu O; Nikolau BJ
    Plant J; 2015 Nov; 84(4):718-32. PubMed ID: 26402847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery and Characterization of the 3-Hydroxyacyl-ACP Dehydratase Component of the Plant Mitochondrial Fatty Acid Synthase System.
    Guan X; Okazaki Y; Lithio A; Li L; Zhao X; Jin H; Nettleton D; Saito K; Nikolau BJ
    Plant Physiol; 2017 Apr; 173(4):2010-2028. PubMed ID: 28202596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AAE13 encodes a dual-localized malonyl-CoA synthetase that is crucial for mitochondrial fatty acid biosynthesis.
    Guan X; Nikolau BJ
    Plant J; 2016 Mar; 85(5):581-93. PubMed ID: 26836315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A nuclear-encoded mitochondrial gene AtCIB22 is essential for plant development in Arabidopsis.
    Han L; Qin G; Kang D; Chen Z; Gu H; Qu LJ
    J Genet Genomics; 2010 Oct; 37(10):667-83. PubMed ID: 21035093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial Fatty Acid Synthase Utilizes Multiple Acyl Carrier Protein Isoforms.
    Fu X; Guan X; Garlock R; Nikolau BJ
    Plant Physiol; 2020 Jun; 183(2):547-557. PubMed ID: 32094306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-Localized Enzymatic Components Constitute the Fatty Acid Synthase Systems in Mitochondria and Plastids.
    Guan X; Okazaki Y; Zhang R; Saito K; Nikolau BJ
    Plant Physiol; 2020 Jun; 183(2):517-529. PubMed ID: 32245791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The transcription factor AtDOF4.2 regulates shoot branching and seed coat formation in Arabidopsis.
    Zou HF; Zhang YQ; Wei W; Chen HW; Song QX; Liu YF; Zhao MY; Wang F; Zhang BC; Lin Q; Zhang WK; Ma B; Zhou YH; Zhang JS; Chen SY
    Biochem J; 2013 Jan; 449(2):373-88. PubMed ID: 23095045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The AtPPT1 gene encoding 4-hydroxybenzoate polyprenyl diphosphate transferase in ubiquinone biosynthesis is required for embryo development in Arabidopsis thaliana.
    Okada K; Ohara K; Yazaki K; Nozaki K; Uchida N; Kawamukai M; Nojiri H; Yamane H
    Plant Mol Biol; 2004 Jul; 55(4):567-77. PubMed ID: 15604701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arabidopsis A BOUT DE SOUFFLE is a putative mitochondrial transporter involved in photorespiratory metabolism and is required for meristem growth at ambient CO₂ levels.
    Eisenhut M; Planchais S; Cabassa C; Guivarc'h A; Justin AM; Taconnat L; Renou JP; Linka M; Gagneul D; Timm S; Bauwe H; Carol P; Weber AP
    Plant J; 2013 Mar; 73(5):836-49. PubMed ID: 23181524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contiguous RNA editing sites in the mitochondrial nad1 transcript of Arabidopsis thaliana are recognized by different proteins.
    Arenas-M A; Takenaka M; Moreno S; Gómez I; Jordana X
    FEBS Lett; 2013 Apr; 587(7):887-91. PubMed ID: 23416303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial protein lipoylation does not exclusively depend on the mtKAS pathway of de novo fatty acid synthesis in Arabidopsis.
    Ewald R; Kolukisaoglu U; Bauwe U; Mikkat S; Bauwe H
    Plant Physiol; 2007 Sep; 145(1):41-8. PubMed ID: 17616510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The characterization of a mitochondrial acyl carrier protein isoform isolated from Arabidopsis thaliana.
    Shintani DK; Ohlrogge JB
    Plant Physiol; 1994 Apr; 104(4):1221-9. PubMed ID: 8016262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defense activated by 9-lipoxygenase-derived oxylipins requires specific mitochondrial proteins.
    Vellosillo T; Aguilera V; Marcos R; Bartsch M; Vicente J; Cascón T; Hamberg M; Castresana C
    Plant Physiol; 2013 Feb; 161(2):617-27. PubMed ID: 23370715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial glycolate oxidation contributes to photorespiration in higher plants.
    Niessen M; Thiruveedhi K; Rosenkranz R; Kebeish R; Hirsch HJ; Kreuzaler F; Peterhänsel C
    J Exp Bot; 2007; 58(10):2709-15. PubMed ID: 17595195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis.
    Tanaka H; Osakabe Y; Katsura S; Mizuno S; Maruyama K; Kusakabe K; Mizoi J; Shinozaki K; Yamaguchi-Shinozaki K
    Plant J; 2012 May; 70(4):599-613. PubMed ID: 22225700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of an Arabidopsis mitochondrial succinate-fumarate translocator.
    Catoni E; Schwab R; Hilpert M; Desimone M; Schwacke R; Flügge UI; Schumacher K; Frommer WB
    FEBS Lett; 2003 Jan; 534(1-3):87-92. PubMed ID: 12527366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterologous expression of flax PHOSPHOLIPID:DIACYLGLYCEROL CHOLINEPHOSPHOTRANSFERASE (PDCT) increases polyunsaturated fatty acid content in yeast and Arabidopsis seeds.
    Wickramarathna AD; Siloto RM; Mietkiewska E; Singer SD; Pan X; Weselake RJ
    BMC Biotechnol; 2015 Jun; 15():63. PubMed ID: 26123542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. INTERMEDIATE CLEAVAGE PEPTIDASE55 Modifies Enzyme Amino Termini and Alters Protein Stability in Arabidopsis Mitochondria.
    Huang S; Nelson CJ; Li L; Taylor NL; Ströher E; Peteriet J; Millar AH
    Plant Physiol; 2015 Jun; 168(2):415-27. PubMed ID: 25862457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of NDA-type alternative mitochondrial NAD(P)H dehydrogenases in arabidopsis thaliana modifies growth and metabolism, but not high light stimulation of mitochondrial electron transport.
    Wallström SV; Florez-Sarasa I; Araújo WL; Escobar MA; Geisler DA; Aidemark M; Lager I; Fernie AR; Ribas-Carbó M; Rasmusson AG
    Plant Cell Physiol; 2014 May; 55(5):881-96. PubMed ID: 24486764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The lack of mitochondrial AtFtsH4 protease alters Arabidopsis leaf morphology at the late stage of rosette development under short-day photoperiod.
    Gibala M; Kicia M; Sakamoto W; Gola EM; Kubrakiewicz J; Smakowska E; Janska H
    Plant J; 2009 Sep; 59(5):685-99. PubMed ID: 19453455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.