These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 26403107)
1. Phenological changes in olive (Ola europaea L.) reproductive cycle in southern Spain due to climate change. Garcia-Mozo H; Oteros J; Galan C Ann Agric Environ Med; 2015; 22(3):421-8. PubMed ID: 26403107 [TBL] [Abstract][Full Text] [Related]
2. Statistical approach to the analysis of olive long-term pollen season trends in southern Spain. García-Mozo H; Yaezel L; Oteros J; Galán C Sci Total Environ; 2014 Mar; 473-474():103-9. PubMed ID: 24361781 [TBL] [Abstract][Full Text] [Related]
3. Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. Galán C; García-Mozo H; Vázquez L; Ruiz L; de la Guardia CD; Trigo MM Int J Biometeorol; 2005 Jan; 49(3):184-8. PubMed ID: 15645246 [TBL] [Abstract][Full Text] [Related]
4. Year clustering analysis for modelling olive flowering phenology. Oteros J; García-Mozo H; Hervás-Martínez C; Galán C Int J Biometeorol; 2013 Jul; 57(4):545-55. PubMed ID: 22886343 [TBL] [Abstract][Full Text] [Related]
5. Spatiotemporal analysis of olive flowering using geostatistical techniques. Rojo J; Pérez-Badia R Sci Total Environ; 2015 Feb; 505():860-9. PubMed ID: 25461089 [TBL] [Abstract][Full Text] [Related]
6. Bioclimatic requirements for olive flowering in two Mediterranean regions located at the same latitude (Andalucia, Spain and Sicily, Italy). Orlandi F; Vazquez LM; Ruga L; Bonofiglio T; Fornaciari M; Garcia-Mozo H; Domínguez E; Romano B; Galan C Ann Agric Environ Med; 2005; 12(1):47-52. PubMed ID: 16028866 [TBL] [Abstract][Full Text] [Related]
7. Models for forecasting the flowering of Cornicabra olive groves. Rojo J; Pérez-Badia R Int J Biometeorol; 2015 Nov; 59(11):1547-56. PubMed ID: 25656796 [TBL] [Abstract][Full Text] [Related]
8. Olive flowering trends in a large Mediterranean area (Italy and Spain). Orlandi F; Garcia-Mozo H; Galán C; Romano B; de la Guardia CD; Ruiz L; del Mar Trigo M; Dominguez-Vilches E; Fornaciari M Int J Biometeorol; 2010 Mar; 54(2):151-63. PubMed ID: 19802634 [TBL] [Abstract][Full Text] [Related]
9. Phenological models to predict the main flowering phases of olive (Olea europaea L.) along a latitudinal and longitudinal gradient across the Mediterranean region. Aguilera F; Fornaciari M; Ruiz-Valenzuela L; Galán C; Msallem M; Dhiab AB; la Guardia CD; Del Mar Trigo M; Bonofiglio T; Orlandi F Int J Biometeorol; 2015 May; 59(5):629-41. PubMed ID: 25060840 [TBL] [Abstract][Full Text] [Related]
10. Regional forecast model for the Olea pollen season in Extremadura (SW Spain). Fernández-Rodríguez S; Durán-Barroso P; Silva-Palacios I; Tormo-Molina R; Maya-Manzano JM; Gonzalo-Garijo Á Int J Biometeorol; 2016 Oct; 60(10):1509-1517. PubMed ID: 26896182 [TBL] [Abstract][Full Text] [Related]
11. Environmental behaviour of airborne Amaranthaceae pollen in the southern part of the Iberian Peninsula, and its role in future climate scenarios. Cariñanos P; Alcázar P; Galán C; Domínguez E Sci Total Environ; 2014 Feb; 470-471():480-7. PubMed ID: 24176695 [TBL] [Abstract][Full Text] [Related]
12. Impact of land cover changes and climate on the main airborne pollen types in Southern Spain. García-Mozo H; Oteros JA; Galán C Sci Total Environ; 2016 Apr; 548-549():221-228. PubMed ID: 26802350 [TBL] [Abstract][Full Text] [Related]
13. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Olesen JE; Børgesen CD; Elsgaard L; Palosuo T; Rötter RP; Skjelvåg AO; Peltonen-Sainio P; Börjesson T; Trnka M; Ewert F; Siebert S; Brisson N; Eitzinger J; van Asselt ED; Oberforster M; van der Fels-Klerx HJ Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1527-42. PubMed ID: 22934894 [TBL] [Abstract][Full Text] [Related]
14. Phenological stages of Proso millet (Panicum miliaceum L.) encoded in BBCH scale. Ventura F; Vignudelli M; Poggi GM; Negri L; Dinelli G Int J Biometeorol; 2020 Jul; 64(7):1167-1181. PubMed ID: 32179985 [TBL] [Abstract][Full Text] [Related]
16. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades. Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538 [TBL] [Abstract][Full Text] [Related]
17. Quercus pollen season dynamics in the Iberian peninsula: response to meteorological parameters and possible consequences of climate change. Garcia-Mozo H; Galan C; Jato V; Belmonte J; de la Guardia C; Fernandez D; Gutierrez M; Aira M; Roure J; Ruiz L; Trigo M; Dominguez-Vilches E Ann Agric Environ Med; 2006; 13(2):209-24. PubMed ID: 17195993 [TBL] [Abstract][Full Text] [Related]
18. Phenological mismatch with abiotic conditions implications for flowering in Arctic plants. Wheeler HC; Høye TT; Schmidt NM; Svenning JC; Forchhammer MC Ecology; 2015 Mar; 96(3):775-87. PubMed ID: 26236873 [TBL] [Abstract][Full Text] [Related]
19. Climate change impact on the olive pollen season in Mediterranean areas of Italy: air quality in late spring from an allergenic point of view. Bonofiglio T; Orlandi F; Ruga L; Romano B; Fornaciari M Environ Monit Assess; 2013 Jan; 185(1):877-90. PubMed ID: 22466251 [TBL] [Abstract][Full Text] [Related]
20. Airborne pollen trends in the Iberian Peninsula. Galán C; Alcázar P; Oteros J; García-Mozo H; Aira MJ; Belmonte J; Diaz de la Guardia C; Fernández-González D; Gutierrez-Bustillo M; Moreno-Grau S; Pérez-Badía R; Rodríguez-Rajo J; Ruiz-Valenzuela L; Tormo R; Trigo MM; Domínguez-Vilches E Sci Total Environ; 2016 Apr; 550():53-59. PubMed ID: 26803684 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]