These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 26403107)
21. Aerobiological and phenological study of Pistacia in Córdoba city (Spain). Velasco-Jiménez MJ; Arenas M; Alcázar P; Galán C; Domínguez-Vilches E Sci Total Environ; 2015 Feb; 505():1036-42. PubMed ID: 25461104 [TBL] [Abstract][Full Text] [Related]
22. Use of phenological and pollen-production data for interpreting atmospheric birch pollen curves. Jato V; Rodríguez-Rajo FJ; Aira MJ Ann Agric Environ Med; 2007; 14(2):271-80. PubMed ID: 18247464 [TBL] [Abstract][Full Text] [Related]
23. Inflorescence Emergence and Flowering Response of Olive Cultivars Grown in Olive Reference Collection of Portugal (ORCP). Inês C; Gomez-Jimenez MC; Cordeiro AM Plants (Basel); 2023 May; 12(11):. PubMed ID: 37299068 [TBL] [Abstract][Full Text] [Related]
24. The role of temperature in the onset of the Olea europaea L. pollen season in southwestern Spain. Galán C; García-Mozo H; Cariñanos P; Alcázar P; Domínguez-Vilches E Int J Biometeorol; 2001 Feb; 45(1):8-12. PubMed ID: 11411416 [TBL] [Abstract][Full Text] [Related]
25. Limited alpine climatic warming and modeled phenology advancement for three alpine species in the Northeast United States. Kimball KD; Davis ML; Weihrauch DM; Murray GL; Rancourt K Am J Bot; 2014 Sep; 101(9):1437-46. PubMed ID: 25253704 [TBL] [Abstract][Full Text] [Related]
26. Synoptic and meteorological characterisation of olive pollen transport in Córdoba province (south-western Spain). Hernández-Ceballos MA; García-Mozo H; Adame JA; Domínguez-Vilches E; De la Morena BA; Bolívar JP; Galán C Int J Biometeorol; 2011 Jan; 55(1):17-34. PubMed ID: 20512357 [TBL] [Abstract][Full Text] [Related]
27. Influence of meteorological parameters on Olea pollen concentrations in Córdoba (south-western Spain). Vázquez LM; Galán C; Domínguez-Vilches E Int J Biometeorol; 2003 Dec; 48(2):83-90. PubMed ID: 12925873 [TBL] [Abstract][Full Text] [Related]
28. Analysis of airborne Olea pollen in Cartagena (Spain). Galera MD; Elvira-Rendueles B; Moreno JM; Negral L; Ruiz-Abellón MC; García-Sánchez A; Moreno-Grau S Sci Total Environ; 2018 May; 622-623():436-445. PubMed ID: 29220768 [TBL] [Abstract][Full Text] [Related]
29. Analysis of Copernicus' ERA5 Climate Reanalysis Data as a Replacement for Weather Station Temperature Measurements in Machine Learning Models for Olive Phenology Phase Prediction. Oses N; Azpiroz I; Marchi S; Guidotti D; Quartulli M; G Olaizola I Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33182272 [TBL] [Abstract][Full Text] [Related]
30. Assessment of Quercus flowering trends in NW Spain. Jato V; Rodríguez-Rajo FJ; Fernandez-González M; Aira MJ Int J Biometeorol; 2015 May; 59(5):517-31. PubMed ID: 25108375 [TBL] [Abstract][Full Text] [Related]
31. Phenological response to climate change in China: a meta-analysis. Ge Q; Wang H; Rutishauser T; Dai J Glob Chang Biol; 2015 Jan; 21(1):265-74. PubMed ID: 24895088 [TBL] [Abstract][Full Text] [Related]
32. Modeling olive pollen intensity in the Mediterranean region through analysis of emission sources. Rojo J; Orlandi F; Pérez-Badia R; Aguilera F; Ben Dhiab A; Bouziane H; Díaz de la Guardia C; Galán C; Gutiérrez-Bustillo AM; Moreno-Grau S; Msallem M; Trigo MM; Fornaciari M Sci Total Environ; 2016 May; 551-552():73-82. PubMed ID: 26874763 [TBL] [Abstract][Full Text] [Related]
33. Phenological behaviour of Quercus in Ourense (NW Spain) and its relationship with the atmospheric pollen season. Jato V; Rodríguez-Rajo FJ; Méndez J; Aira MJ Int J Biometeorol; 2002 Sep; 46(4):176-84. PubMed ID: 12242473 [TBL] [Abstract][Full Text] [Related]
34. Correlation between airborne Olea europaea pollen concentrations and levels of the major allergen Ole e 1 in Córdoba, Spain, 2012-2014. Plaza MP; Alcázar P; Galán C Int J Biometeorol; 2016 Dec; 60(12):1841-1847. PubMed ID: 27094917 [TBL] [Abstract][Full Text] [Related]
35. Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology. Butt N; Seabrook L; Maron M; Law BS; Dawson TP; Syktus J; McAlpine CA Glob Chang Biol; 2015 Sep; 21(9):3267-77. PubMed ID: 25605302 [TBL] [Abstract][Full Text] [Related]
36. Phenological sequences: how early-season events define those that follow. Ettinger AK; Gee S; Wolkovich EM Am J Bot; 2018 Oct; 105(10):1771-1780. PubMed ID: 30324664 [TBL] [Abstract][Full Text] [Related]
37. Biometeorological and autoregressive indices for predicting olive pollen intensity. Oteros J; García-Mozo H; Hervás C; Galán C Int J Biometeorol; 2013 Mar; 57(2):307-16. PubMed ID: 22660969 [TBL] [Abstract][Full Text] [Related]
38. Long-term trends and influence of climate and land-use changes on pollen profiles of a Mediterranean oak forest. López-Orozco R; García-Mozo H; Oteros J; Galán C Sci Total Environ; 2023 Nov; 897():165400. PubMed ID: 37423282 [TBL] [Abstract][Full Text] [Related]
39. Grapevine phenology and climate change in Georgia. Cola G; Failla O; Maghradze D; Megrelidze L; Mariani L Int J Biometeorol; 2017 Apr; 61(4):761-773. PubMed ID: 27714505 [TBL] [Abstract][Full Text] [Related]
40. Changes in the pollen seasons of the early flowering trees Alnus spp. and Corylus spp. in Worcester, United Kingdom, 1996-2005. Emberlin J; Smith M; Close R; Adams-Groom B Int J Biometeorol; 2007 Jan; 51(3):181-91. PubMed ID: 17024396 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]