BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 26403191)

  • 1. PTEN regulates RPA1 and protects DNA replication forks.
    Wang G; Li Y; Wang P; Liang H; Cui M; Zhu M; Guo L; Su Q; Sun Y; McNutt MA; Yin Y
    Cell Res; 2015 Nov; 25(11):1189-204. PubMed ID: 26403191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PTEN Controls the DNA Replication Process through MCM2 in Response to Replicative Stress.
    Feng J; Liang J; Li J; Li Y; Liang H; Zhao X; McNutt MA; Yin Y
    Cell Rep; 2015 Nov; 13(7):1295-1303. PubMed ID: 26549452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25847274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25773776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PTEN regulates DNA replication progression and stalled fork recovery.
    He J; Kang X; Yin Y; Chao KS; Shen WH
    Nat Commun; 2015 Jul; 6():7620. PubMed ID: 26158445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cis lethal genetic interactions attenuate and alter p53 tumorigenesis.
    Wang Y; Zhang W; Edelmann L; Kolodner RD; Kucherlapati R; Edelmann W
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5511-5. PubMed ID: 20212136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Context-dependent pro- and anti-resection roles of ZKSCAN3 in the regulation of fork processing during replication stress.
    Yang Z; Lemacon DS; Li S; Cheruiyot A; Kong L; Tan K; Cheng C; Turkay E; He D; You Z
    J Biol Chem; 2022 Aug; 298(8):102215. PubMed ID: 35779634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preventing replication fork collapse to maintain genome integrity.
    Cortez D
    DNA Repair (Amst); 2015 Aug; 32():149-157. PubMed ID: 25957489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PTEN in the maintenance of genome integrity: From DNA replication to chromosome segregation.
    Hou SQ; Ouyang M; Brandmaier A; Hao H; Shen WH
    Bioessays; 2017 Oct; 39(10):. PubMed ID: 28891157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute hydroxyurea-induced replication blockade results in replisome components disengagement from nascent DNA without causing fork collapse.
    Ercilla A; Feu S; Aranda S; Llopis A; Brynjólfsdóttir SH; Sørensen CS; Toledo LI; Agell N
    Cell Mol Life Sci; 2020 Feb; 77(4):735-749. PubMed ID: 31297568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fork restart protein, PriA, binds around oriC after depletion of nucleotide precursors: Replication fork arrest near the replication origin.
    Tanaka T; Nishito Y; Masai H
    Biochem Biophys Res Commun; 2016 Feb; 470(3):546-551. PubMed ID: 26801562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smarcal1 and Zranb3 Protect Replication Forks from Myc-Induced DNA Replication Stress.
    Puccetti MV; Adams CM; Kushinsky S; Eischen CM
    Cancer Res; 2019 Apr; 79(7):1612-1623. PubMed ID: 30610086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PARI Regulates Stalled Replication Fork Processing To Maintain Genome Stability upon Replication Stress in Mice.
    Mochizuki AL; Katanaya A; Hayashi E; Hosokawa M; Moribe E; Motegi A; Ishiai M; Takata M; Kondoh G; Watanabe H; Nakatsuji N; Chuma S
    Mol Cell Biol; 2017 Dec; 37(23):. PubMed ID: 28894029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replication fork instability and the consequences of fork collisions from rereplication.
    Alexander JL; Orr-Weaver TL
    Genes Dev; 2016 Oct; 30(20):2241-2252. PubMed ID: 27898391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CK2-dependent degradation of CBX3 dictates replication fork stalling and PARP inhibitor sensitivity.
    Ma J; Ren D; Wang Z; Li W; Li L; Liu T; Ye Q; Lei Y; Jian Y; Ma B; Fan Y; Liu J; Gao Y; Jin X; Huang H; Li L
    Sci Adv; 2024 May; 10(21):eadk8908. PubMed ID: 38781342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaperoning HMGA2 protein protects stalled replication forks in stem and cancer cells.
    Yu H; Lim HH; Tjokro NO; Sathiyanathan P; Natarajan S; Chew TW; Klonisch T; Goodman SD; Surana U; Dröge P
    Cell Rep; 2014 Feb; 6(4):684-97. PubMed ID: 24508460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. swi1- and swi3-dependent and independent replication fork arrest at the ribosomal DNA of Schizosaccharomyces pombe.
    Krings G; Bastia D
    Proc Natl Acad Sci U S A; 2004 Sep; 101(39):14085-90. PubMed ID: 15371597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Building up and breaking down: mechanisms controlling recombination during replication.
    Branzei D; Szakal B
    Crit Rev Biochem Mol Biol; 2017 Aug; 52(4):381-394. PubMed ID: 28325102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triplex structures induce DNA double strand breaks via replication fork collapse in NER deficient cells.
    Kaushik Tiwari M; Adaku N; Peart N; Rogers FA
    Nucleic Acids Res; 2016 Sep; 44(16):7742-54. PubMed ID: 27298253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Failure of origin activation in response to fork stalling leads to chromosomal instability at fragile sites.
    Ozeri-Galai E; Lebofsky R; Rahat A; Bester AC; Bensimon A; Kerem B
    Mol Cell; 2011 Jul; 43(1):122-31. PubMed ID: 21726815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.