BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26403495)

  • 1. Protein unfolding is essential for cleavage within the α-helix of a model protein substrate by the serine protease, thrombin.
    Robertson AL; Headey SJ; Ng NM; Wijeyewickrema LC; Scanlon MJ; Pike RN; Bottomley SP
    Biochimie; 2016 Mar; 122():227-34. PubMed ID: 26403495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of amino acid motifs for thrombin cleavage and validation using a model substrate.
    Ng NM; Pierce JD; Webb GI; Ratnikov BI; Wijeyewickrema LC; Duncan RC; Robertson AL; Bottomley SP; Boyd SE; Pike RN
    Biochemistry; 2011 Dec; 50(48):10499-507. PubMed ID: 22050556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tubulin secondary structure analysis, limited proteolysis sites, and homology to FtsZ.
    de Pereda JM; Leynadier D; Evangelio JA; Chacón P; Andreu JM
    Biochemistry; 1996 Nov; 35(45):14203-15. PubMed ID: 8916905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intramembrane proteolysis of Mgm1 by the mitochondrial rhomboid protease is highly promiscuous regarding the sequence of the cleaved hydrophobic segment.
    Schäfer A; Zick M; Kief J; Steger M; Heide H; Duvezin-Caubet S; Neupert W; Reichert AS
    J Mol Biol; 2010 Aug; 401(2):182-93. PubMed ID: 20558178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limited proteolysis of bovine alpha-lactalbumin: isolation and characterization of protein domains.
    Polverino de Laureto P; Scaramella E; Frigo M; Wondrich FG; De Filippis V; Zambonin M; Fontana A
    Protein Sci; 1999 Nov; 8(11):2290-303. PubMed ID: 10595532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of the Arg566 residue of Aeromonas sobria serine protease in substrate specificity.
    Kobayashi H; Otsubo T; Teraoka F; Ikeda K; Seike S; Takahashi E; Okamoto K; Yoshida T; Tsuge H; Yamanaka H
    PLoS One; 2017; 12(10):e0186392. PubMed ID: 29023605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of thrombin-ecotin reveals conformational changes and extended interactions.
    Wang SX; Esmon CT; Fletterick RJ
    Biochemistry; 2001 Aug; 40(34):10038-46. PubMed ID: 11513582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-induced interactions of calmodulin domains revealed by quantitative thrombin footprinting of Arg37 and Arg106.
    Shea MA; Verhoeven AS; Pedigo S
    Biochemistry; 1996 Mar; 35(9):2943-57. PubMed ID: 8608132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Thrombin: a multifunctional enzyme].
    Polack B
    Ann Biol Clin (Paris); 2003; 61(1):23-31. PubMed ID: 12604383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary relationships between seryl-histidine dipeptide and modern serine proteases from the analysis based on mass spectrometry and bioinformatics.
    Liu Y; Li YB; Gao X; Yu YF; Liu XX; Ji ZL; Ma Y; Li YM; Zhao YF
    Amino Acids; 2018 Jan; 50(1):69-77. PubMed ID: 29071530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The membrane anchor of the transcriptional activator SREBP is characterized by intrinsic conformational flexibility.
    Linser R; Salvi N; Briones R; Rovó P; de Groot BL; Wagner G
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12390-5. PubMed ID: 26392539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serine protease dynamics revealed by NMR analysis of the thrombin-thrombomodulin complex.
    Peacock RB; McGrann T; Tonelli M; Komives EA
    Sci Rep; 2021 Apr; 11(1):9354. PubMed ID: 33931701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional and structural characterization of Vibrio cholerae extracellular serine protease B, VesB.
    Gadwal S; Korotkov KV; Delarosa JR; Hol WG; Sandkvist M
    J Biol Chem; 2014 Mar; 289(12):8288-98. PubMed ID: 24459146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional and structural characterization of a new serine protease with thrombin-like activity TLBan from Bothrops andianus (Andean Lancehead) snake venom.
    Valeriano-Zapana JA; Segovia-Cruz FS; Rojas-Hualpa JM; Martins-de-Souza D; Ponce-Soto LA; Marangoni S
    Toxicon; 2012 Feb; 59(2):231-40. PubMed ID: 22155303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and mechanistic principles of intramembrane proteolysis--lessons from rhomboids.
    Strisovsky K
    FEBS J; 2013 Apr; 280(7):1579-603. PubMed ID: 23432912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insulin-like growth factor-binding protein-5 is cleaved by physiological concentrations of thrombin.
    Zheng B; Clarke JB; Busby WH; Duan C; Clemmons DR
    Endocrinology; 1998 Apr; 139(4):1708-14. PubMed ID: 9528953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparative induction and characterization of L-antithrombin: a structural homologue of latent plasminogen activator inhibitor-1.
    Wardell MR; Chang WS; Bruce D; Skinner R; Lesk AM; Carrell RW
    Biochemistry; 1997 Oct; 36(42):13133-42. PubMed ID: 9335576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed mutagenesis of alpha II spectrin at codon 1175 modulates its mu-calpain susceptibility.
    Stabach PR; Cianci CD; Glantz SB; Zhang Z; Morrow JS
    Biochemistry; 1997 Jan; 36(1):57-65. PubMed ID: 8993318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of fusolisin, the Fusobacterium nucleatum autotransporter serine protease.
    Doron L; Coppenhagen-Glazer S; Ibrahim Y; Eini A; Naor R; Rosen G; Bachrach G
    PLoS One; 2014; 9(10):e111329. PubMed ID: 25357190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. XylS-Pm promoter interactions through two helix-turn-helix motifs: identifying XylS residues important for DNA binding and activation.
    Domínguez-Cuevas P; Marín P; Marqués S; Ramos JL
    J Mol Biol; 2008 Jan; 375(1):59-69. PubMed ID: 18005985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.