These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 26403801)

  • 21. Bioengineered silk proteins to control cell and tissue functions.
    Preda RC; Leisk G; Omenetto F; Kaplan DL
    Methods Mol Biol; 2013; 996():19-41. PubMed ID: 23504416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New process to form a silk fibroin porous 3-D structure.
    Tamada Y
    Biomacromolecules; 2005; 6(6):3100-6. PubMed ID: 16283733
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics.
    Huang W; Rollett A; Kaplan DL
    Expert Opin Drug Deliv; 2015 May; 12(5):779-91. PubMed ID: 25476201
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microscopic considerations for optimizing silk biomaterials.
    DeBari MK; Abbott RD
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Mar; 11(2):e1534. PubMed ID: 29943405
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recombinant spider silk proteins for applications in biomaterials.
    Spiess K; Lammel A; Scheibel T
    Macromol Biosci; 2010 Sep; 10(9):998-1007. PubMed ID: 20602494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insoluble and flexible silk films containing glycerol.
    Lu S; Wang X; Lu Q; Zhang X; Kluge JA; Uppal N; Omenetto F; Kaplan DL
    Biomacromolecules; 2010 Jan; 11(1):143-50. PubMed ID: 19919091
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioactive Silk Fibroin-Based Hybrid Biomaterials for Musculoskeletal Engineering: Recent Progress and Perspectives.
    Wu R; Li H; Yang Y; Zheng Q; Li S; Chen Y
    ACS Appl Bio Mater; 2021 Sep; 4(9):6630-6646. PubMed ID: 35006966
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of ionic strength on the interfacial viscoelasticity and stability of silk fibroin at the oil/water interface.
    Tang X; Qiao X; Miller R; Sun K
    J Sci Food Agric; 2016 Dec; 96(15):4918-4928. PubMed ID: 27256721
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation and processing of silk proteins for biomedical applications.
    Kundu B; Kurland NE; Yadavalli VK; Kundu SC
    Int J Biol Macromol; 2014 Sep; 70():70-7. PubMed ID: 24971560
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of silk fibroin carriers for controlled release.
    Liu Q; Liu H; Fan Y
    Microsc Res Tech; 2017 Mar; 80(3):312-320. PubMed ID: 26638113
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Silk fibroin scaffolds with stable silk I crystal and tunable properties.
    Li X; Li N; Fan Q; Yan K; Zhang Q; Wang D; You R
    Int J Biol Macromol; 2023 Sep; 248():125910. PubMed ID: 37479202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of processing on silk-based biomaterials: reproducibility and biocompatibility.
    Wray LS; Hu X; Gallego J; Georgakoudi I; Omenetto FG; Schmidt D; Kaplan DL
    J Biomed Mater Res B Appl Biomater; 2011 Oct; 99(1):89-101. PubMed ID: 21695778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design, expression and solid-state NMR characterization of silk-like materials constructed from sequences of spider silk, Samia cynthia ricini and Bombyx mori silk fibroins.
    Yang M; Asakura T
    J Biochem; 2005 Jun; 137(6):721-9. PubMed ID: 16002994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Silk and Silk-Like Supramolecular Materials.
    Fink TD; Zha RH
    Macromol Rapid Commun; 2018 Sep; 39(17):e1700834. PubMed ID: 29457296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic Analysis Reveals the Role of Secondary Nucleation in Regenerated Silk Fibroin Self-Assembly.
    Kamada A; Toprakcioglu Z; Knowles TPJ
    Biomacromolecules; 2023 Apr; 24(4):1709-1716. PubMed ID: 36926854
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Milled non-mulberry silk fibroin microparticles as biomaterial for biomedical applications.
    Bhardwaj N; Rajkhowa R; Wang X; Devi D
    Int J Biol Macromol; 2015 Nov; 81():31-40. PubMed ID: 26226458
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of electrospun beaded fibers from Thai silk fibroin and gelatin for controlled release application.
    Somvipart S; Kanokpanont S; Rangkupan R; Ratanavaraporn J; Damrongsakkul S
    Int J Biol Macromol; 2013 Apr; 55():176-84. PubMed ID: 23334057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Biomedical Use of Silk: Past, Present, Future.
    Holland C; Numata K; Rnjak-Kovacina J; Seib FP
    Adv Healthc Mater; 2019 Jan; 8(1):e1800465. PubMed ID: 30238637
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of incubation temperature on the self-assembly of regenerated silk fibroin: a study using AFM.
    Zhong J; Liu X; Wei D; Yan J; Wang P; Sun G; He D
    Int J Biol Macromol; 2015 May; 76():195-202. PubMed ID: 25748848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Silk-based delivery systems of bioactive molecules.
    Numata K; Kaplan DL
    Adv Drug Deliv Rev; 2010 Dec; 62(15):1497-508. PubMed ID: 20298729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.