These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26403824)

  • 1. Hadoop neural network for parallel and distributed feature selection.
    Hodge VJ; O'Keefe S; Austin J
    Neural Netw; 2016 Jun; 78():24-35. PubMed ID: 26403824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of the MapReduce programming framework to clinical big data analysis: current landscape and future trends.
    Mohammed EA; Far BH; Naugler C
    BioData Min; 2014; 7():22. PubMed ID: 25383096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce.
    Cao J; Cui H; Shi H; Jiao L
    PLoS One; 2016; 11(6):e0157551. PubMed ID: 27304987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and development of a medical big data processing system based on Hadoop.
    Yao Q; Tian Y; Li PF; Tian LL; Qian YM; Li JS
    J Med Syst; 2015 Mar; 39(3):23. PubMed ID: 25666927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment.
    Cao J; Wang M; Li Y; Zhang Q
    PLoS One; 2019; 14(4):e0215136. PubMed ID: 30970014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of high-dimensional genomic data using MapReduce based probabilistic neural network.
    Baliarsingh SK; Vipsita S; Gandomi AH; Panda A; Bakshi S; Ramasubbareddy S
    Comput Methods Programs Biomed; 2020 Oct; 195():105625. PubMed ID: 32650089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A distributed data processing scheme based on Hadoop for synchrotron radiation experiments.
    Zhang D; Dai ZY; Sun XP; Wu XT; Li H; Tang L; He JH
    J Synchrotron Radiat; 2024 May; 31(Pt 3):635-645. PubMed ID: 38656774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Hadoop MapReduce for Parallel Genetic Algorithms: A Comparison of the Global, Grid and Island Models.
    Ferrucci F; Salza P; Sarro F
    Evol Comput; 2018; 26(4):535-567. PubMed ID: 28661707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Heterogeneity Affects the Design of Hadoop MapReduce Schedulers: A State-of-the-Art Survey and Challenges.
    Pandey V; Saini P
    Big Data; 2018 Jun; 6(2):72-95. PubMed ID: 29924647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HBLAST: Parallelised sequence similarity--A Hadoop MapReducable basic local alignment search tool.
    O'Driscoll A; Belogrudov V; Carroll J; Kropp K; Walsh P; Ghazal P; Sleator RD
    J Biomed Inform; 2015 Apr; 54():58-64. PubMed ID: 25625550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unstructured medical image query using big data - An epilepsy case study.
    Istephan S; Siadat MR
    J Biomed Inform; 2016 Feb; 59():218-26. PubMed ID: 26707450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast, Accurate, and Stable Feature Selection Using Neural Networks.
    Deraeve J; Alexander WH
    Neuroinformatics; 2018 Apr; 16(2):253-268. PubMed ID: 29564729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. STDADS: An Efficient Slow Task Detection Algorithm for Deadline Schedulers.
    Upadhyay U; Sikka G
    Big Data; 2020 Feb; 8(1):62-69. PubMed ID: 31995397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative assessment of the Hadoop framework for analyzing massively parallel DNA sequencing data.
    Siretskiy A; Sundqvist T; Voznesenskiy M; Spjuth O
    Gigascience; 2015; 4():26. PubMed ID: 26045962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A universal deep learning approach for modeling the flow of patients under different severities.
    Jiang S; Chin KS; Tsui KL
    Comput Methods Programs Biomed; 2018 Feb; 154():191-203. PubMed ID: 29249343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An evaluation of standard retrieval algorithms and a binary neural approach.
    Hodge VJ; Austin J
    Neural Netw; 2001 Apr; 14(3):287-303. PubMed ID: 11341567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing big datasets of genomic sequences: fast and scalable collection of k-mer statistics.
    Ferraro Petrillo U; Sorella M; Cattaneo G; Giancarlo R; Rombo SE
    BMC Bioinformatics; 2019 Apr; 20(Suppl 4):138. PubMed ID: 30999863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection of effective features for ECG beat recognition based on nonlinear correlations.
    Chen YH; Yu SN
    Artif Intell Med; 2012 Jan; 54(1):43-52. PubMed ID: 21963421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementing a Parallel Image Edge Detection Algorithm Based on the Otsu-Canny Operator on the Hadoop Platform.
    Cao J; Chen L; Wang M; Tian Y
    Comput Intell Neurosci; 2018; 2018():3598284. PubMed ID: 29861711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A decentralized training algorithm for Echo State Networks in distributed big data applications.
    Scardapane S; Wang D; Panella M
    Neural Netw; 2016 Jun; 78():65-74. PubMed ID: 26341005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.