BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 26403922)

  • 1. Iterative key-residues interrogation of a phytase with thermostability increasing substitutions identified in directed evolution.
    Shivange AV; Roccatano D; Schwaneberg U
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):227-42. PubMed ID: 26403922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed evolution of a highly active Yersinia mollaretii phytase.
    Shivange AV; Serwe A; Dennig A; Roccatano D; Haefner S; Schwaneberg U
    Appl Microbiol Biotechnol; 2012 Jul; 95(2):405-18. PubMed ID: 22159661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-site saturation by OmniChange yields a pH- and thermally improved phytase.
    Shivange AV; Dennig A; Schwaneberg U
    J Biotechnol; 2014 Jan; 170():68-72. PubMed ID: 24315971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directed evolution of an acid Yersinia mollaretii phytase for broadened activity at neutral pH.
    Körfer G; Novoa C; Kern J; Balla E; Grütering C; Davari MD; Martinez R; Vojcic L; Schwaneberg U
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9607-9620. PubMed ID: 30141080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein consensus-based surface engineering (ProCoS): a computer-assisted method for directed protein evolution.
    Shivange AV; Hoeffken HW; Haefner S; Schwaneberg U
    Biotechniques; 2016 Dec; 61(6):305-314. PubMed ID: 27938322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing thermal tolerance of Aspergillus niger PhyA phytase directed by structural comparison and computational simulation.
    Han N; Miao H; Yu T; Xu B; Yang Y; Wu Q; Zhang R; Huang Z
    BMC Biotechnol; 2018 Jun; 18(1):36. PubMed ID: 29859065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR.
    Kim MS; Lei XG
    Appl Microbiol Biotechnol; 2008 May; 79(1):69-75. PubMed ID: 18340444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational design-based engineering of a thermostable phytase by site-directed mutagenesis.
    Fakhravar A; Hesampour A
    Mol Biol Rep; 2018 Dec; 45(6):2053-2061. PubMed ID: 30196454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of Yersinia Phytases to Improve Pepsin and Trypsin Resistance and Thermostability and Application Potential in the Food and Feed Industry.
    Niu C; Yang P; Luo H; Huang H; Wang Y; Yao B
    J Agric Food Chem; 2017 Aug; 65(34):7337-7344. PubMed ID: 28752758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adopting selected hydrogen bonding and ionic interactions from Aspergillus fumigatus phytase structure improves the thermostability of Aspergillus niger PhyA phytase.
    Zhang W; Mullaney EJ; Lei XG
    Appl Environ Microbiol; 2007 May; 73(9):3069-76. PubMed ID: 17351092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rational design to enhance the resistance of Escherichia coli phytase appA to trypsin.
    Wang X; Du J; Zhang ZY; Fu YJ; Wang WM; Liang AH
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9647-9656. PubMed ID: 30178201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of E. coli Phytase for Increased Thermostability Guided by Rational Parameters.
    Li J; Li X; Gai Y; Sun Y; Zhang D
    J Microbiol Biotechnol; 2019 Mar; 29(3):419-428. PubMed ID: 30786696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of the catalytic properties of Aspergillus fumigatus phytase based on the three-dimensional structure.
    Tomschy A; Tessier M; Wyss M; Brugger R; Broger C; Schnoebelen L; van Loon AP; Pasamontes L
    Protein Sci; 2000 Jul; 9(7):1304-11. PubMed ID: 10933495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of Yersinia frederiksenii phytase performance by a single amino acid substitution.
    Fu D; Huang H; Meng K; Wang Y; Luo H; Yang P; Yuan T; Yao B
    Biotechnol Bioeng; 2009 Aug; 103(5):857-64. PubMed ID: 19378262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering the residual side chains of HAP phytases to improve their pepsin resistance and catalytic efficiency.
    Niu C; Yang P; Luo H; Huang H; Wang Y; Yao B
    Sci Rep; 2017 Feb; 7():42133. PubMed ID: 28186144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the neutral phytase activity from Bacillus amyloliquefaciens DSM 1061 by site-directed mutagenesis.
    Xu W; Shao R; Wang Z; Yan X
    Appl Biochem Biotechnol; 2015 Mar; 175(6):3184-94. PubMed ID: 25613522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved thermostability and enzyme activity of a recombinant phyA mutant phytase from Aspergillus niger N25 by directed evolution and site-directed mutagenesis.
    Tang Z; Jin W; Sun R; Liao Y; Zhen T; Chen H; Wu Q; Gou L; Li C
    Enzyme Microb Technol; 2018 Jan; 108():74-81. PubMed ID: 29108630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of thermostability and kinetic efficiency of Aspergillus niger PhyA phytase by site-directed mutagenesis.
    Hesampour A; Siadat SE; Malboobi MA; Mohandesi N; Arab SS; Ghahremanpour MM
    Appl Biochem Biotechnol; 2015 Mar; 175(5):2528-41. PubMed ID: 25527139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cumulative improvements of thermostability and pH-activity profile of Aspergillus niger PhyA phytase by site-directed mutagenesis.
    Zhang W; Lei XG
    Appl Microbiol Biotechnol; 2008 Jan; 77(5):1033-40. PubMed ID: 17968540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel phytase from Yersinia rohdei with high phytate hydrolysis activity under low pH and strong pepsin conditions.
    Huang H; Luo H; Wang Y; Fu D; Shao N; Wang G; Yang P; Yao B
    Appl Microbiol Biotechnol; 2008 Sep; 80(3):417-26. PubMed ID: 18548246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.