These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 26404)

  • 1. Transport of alpha-aminoisobutyrate by cells and membrane vesicles of Pseudomonas fluorescens.
    Stephenson MC; Midgley M; Dawes EA
    Biochim Biophys Acta; 1978 Jun; 509(3):519-36. PubMed ID: 26404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na(+)- and H(+)-gradient-dependent transport of alpha-aminoisobutyrate by luminal membrane vesicles from rabbit proximal tubule.
    Jessen H; Vorum H; Jørgensen KE; Sheikh MI
    J Physiol; 1991 May; 436():149-67. PubMed ID: 2061829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The transport of alpha-aminoisobutyrate into Crithidia fasciculata.
    Midgley M
    Biochem J; 1978 Jul; 174(1):191-202. PubMed ID: 697752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na+-dependent transport of alpha-aminoisobutyrate in isolated basolateral membrane vesicles from rat parotid glands.
    Takuma T; Baum BJ
    Biochim Biophys Acta; 1985 Jan; 812(2):453-9. PubMed ID: 3967021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of alpha-aminoisobutyrate into Trypanosoma brucei brucei.
    Coolbear KP; Midgley M
    J Gen Microbiol; 1984 Nov; 130(11):2865-71. PubMed ID: 6527126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. alpha-aminoisobutyrate transport into cells from R3230AC mammary adenocarcinoma. Evidence for sodium ion-dependent and -independent carrier-mediated entry and effects of diabetes.
    Hissin PJ; Hilf R
    Biochem J; 1978 Oct; 176(1):205-15. PubMed ID: 728108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of active amino acid transport by growth-related changes in membrane potential in a human fibroblast.
    Villereal ML; Cook JS
    J Biol Chem; 1978 Nov; 253(22):8257-62. PubMed ID: 711750
    [No Abstract]   [Full Text] [Related]  

  • 8. Ionophore-mediated coupling between ion fluxes and amino acid absorption in mouse ascites-tumour cells. Restoration of the physiological gradients of methionine by valinomycin in the absence of adenosine triphosphate.
    Reid M; Gibb LE; Eddy AA
    Biochem J; 1974 Jun; 140(3):383-93. PubMed ID: 4141255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hexose and amino acid transport by chicken embryo fibroblasts infected with temperature-sensitive mutant of Rous sarcoma virus. Comparison of transport properties of whole cells and membrane vesicles.
    Inui KI; Tillotson LG; Isselbacher KJ
    Biochim Biophys Acta; 1980 Jun; 598(3):616-27. PubMed ID: 6248112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneity of L-alanine transport systems in brush-border membrane vesicles from rat placenta during late gestation.
    Alonso-Torre SR; Serrano MA; Medina JM; Alvarado F
    Biochem J; 1992 Nov; 288 ( Pt 1)(Pt 1):47-53. PubMed ID: 1445280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy-dependent sodium efflux and sodium-dependent alpha-aminoisobutyrate transport in purple photosynthetic bacteria.
    Knaff DB; Davidson VL; Petitt CA
    Arch Biochem Biophys; 1981 Oct; 211(1):234-9. PubMed ID: 7305368
    [No Abstract]   [Full Text] [Related]  

  • 12. Influence of serum and insulin on the accumulation of aminoisobutyrate by rat hepatoma cells.
    Grimm J; Manchester KL
    Biochim Biophys Acta; 1976 Aug; 444(1):223-30. PubMed ID: 60138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of serum and amino acids on the accumulation of aminoisobutyrate by rat hepatoma cells. A dedifferentiation of transport routes?
    Gulumian M; Manchester KL
    Biochim Biophys Acta; 1981 Nov; 649(1):24-30. PubMed ID: 7306545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acid transport in diaphragms from newborn rats: evidence for insulin resistance.
    Riggs TR; Wise HD; Motz KL
    Am J Physiol; 1978 Sep; 235(3):E304-10. PubMed ID: 29488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid transport and rubidium-ion uptake in monolayer cultures of hepatocytes from neonatal rats.
    Bellemann P
    Biochem J; 1981 Sep; 198(3):475-83. PubMed ID: 6275850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of active alpha-aminoisobutyric acid transport expressed in membrane vesicles from mouse fibroblasts.
    Lever JE
    Proc Natl Acad Sci U S A; 1976 Aug; 73(8):2614-8. PubMed ID: 183203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium-dependent alpha-aminoisobutyrate transport by the photosynthetic purple sulfur bacterium Chromatium vinosum.
    Pettitt CA; Davidson VL; Cobb A; Knaff DB
    Arch Biochem Biophys; 1982 Jun; 216(1):306-13. PubMed ID: 7103510
    [No Abstract]   [Full Text] [Related]  

  • 18. The relationship between cell surface protein and glucose and alpha-aminoisobutyrate transport in transformed chick and mouse cells.
    Yamada KM; Pastan I
    J Cell Physiol; 1976 Dec; 89(4):827-9. PubMed ID: 188852
    [No Abstract]   [Full Text] [Related]  

  • 19. The effect of microtubular inhibitors on transport of alpha-aminoisobutyric acid. Inhibition of uphill transport without changes in transmembrane gradients of Na+, K+, or H+.
    Goldman ID; Fyfe JM; Bowen D; Loftfield S; Schafer JA
    Biochim Biophys Acta; 1977 Jun; 467(2):185-91. PubMed ID: 18176
    [No Abstract]   [Full Text] [Related]  

  • 20. Sodium ion-substrate symport in a marine bacterium.
    Niven DF; MacLeod RA
    J Bacteriol; 1980 May; 142(2):603-7. PubMed ID: 7380801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.