BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26404148)

  • 1. Precise Identification of Genome-Wide Transcription Start Sites in Bacteria by 5'-Rapid Amplification of cDNA Ends (5'-RACE).
    Matteau D; Rodrigue S
    Methods Mol Biol; 2015; 1334():143-59. PubMed ID: 26404148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TSS-EMOTE, a refined protocol for a more complete and less biased global mapping of transcription start sites in bacterial pathogens.
    Prados J; Linder P; Redder P
    BMC Genomics; 2016 Nov; 17(1):849. PubMed ID: 27806702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential RNA-seq (dRNA-seq) for annotation of transcriptional start sites and small RNAs in Helicobacter pylori.
    Bischler T; Tan HS; Nieselt K; Sharma CM
    Methods; 2015 Sep; 86():89-101. PubMed ID: 26091613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of regulatory RNA in bacterial genomes by genome-scale mapping of transcription start sites.
    Singh N; Wade JT
    Methods Mol Biol; 2014; 1103():1-10. PubMed ID: 24318882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genome-wide identification of promoter regions in Toxoplasma gondii.
    Yamagish J; Suzuki Y
    Methods Mol Biol; 2015; 1201():193-205. PubMed ID: 25388115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide determination of transcription start sites reveals new insights into promoter structures in the actinomycete Corynebacterium glutamicum.
    Albersmeier A; Pfeifer-Sancar K; Rückert C; Kalinowski J
    J Biotechnol; 2017 Sep; 257():99-109. PubMed ID: 28412515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Riboswitch discovery by combining RNA-seq and genome-wide identification of transcriptional start sites.
    Rosinski-Chupin I; Soutourina O; Martin-Verstraete I
    Methods Enzymol; 2014; 549():3-27. PubMed ID: 25432742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput detection of RNA processing in bacteria.
    Gill EE; Chan LS; Winsor GL; Dobson N; Lo R; Ho Sui SJ; Dhillon BK; Taylor PK; Shrestha R; Spencer C; Hancock REW; Unrau PJ; Brinkman FSL
    BMC Genomics; 2018 Mar; 19(1):223. PubMed ID: 29587634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next-generation sequencing-based 5' rapid amplification of cDNA ends for alternative promoters.
    Perera BP; Kim J
    Anal Biochem; 2016 Feb; 494():82-4. PubMed ID: 26617129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. cDNA library construction for next-generation sequencing to determine the transcriptional landscape of Legionella pneumophila.
    Sahr T; Buchrieser C
    Methods Mol Biol; 2013; 954():555-66. PubMed ID: 23150420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting expressed genes using CAGE.
    Murata M; Nishiyori-Sueki H; Kojima-Ishiyama M; Carninci P; Hayashizaki Y; Itoh M
    Methods Mol Biol; 2014; 1164():67-85. PubMed ID: 24927836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Massively Systematic Transcript End Readout, "MASTER": Transcription Start Site Selection, Transcriptional Slippage, and Transcript Yields.
    Vvedenskaya IO; Zhang Y; Goldman SR; Valenti A; Visone V; Taylor DM; Ebright RH; Nickels BE
    Mol Cell; 2015 Dec; 60(6):953-65. PubMed ID: 26626484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Amplification of cDNA Ends for RNA Transcript Sequencing in Staphylococcus.
    Miller E
    Methods Mol Biol; 2016; 1373():169-83. PubMed ID: 26187203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The antiapoptotic gene Ian4l1 in the rat: genomic organization and promoter characterization.
    Andersen UN; Markholst H; Hornum L
    Gene; 2004 Oct; 341():141-8. PubMed ID: 15474297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Where does transcription start? 5'-RACE adapted to next-generation sequencing.
    Leenen FA; Vernocchi S; Hunewald OE; Schmitz S; Molitor AM; Muller CP; Turner JD
    Nucleic Acids Res; 2016 Apr; 44(6):2628-45. PubMed ID: 26615195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep-RACE: Comprehensive Search for Novel ncRNAs Associated to a Specific Locus.
    Pastori C; Velmeshev D; Peschansky VJ
    Methods Mol Biol; 2017; 1543():129-143. PubMed ID: 28349424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple and efficient profiling of transcription initiation and transcript levels with STRIPE-seq.
    Policastro RA; Raborn RT; Brendel VP; Zentner GE
    Genome Res; 2020 Jun; 30(6):910-923. PubMed ID: 32660958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ARF-TSS: an alternative method for identification of transcription start site in bacteria.
    Wang C; Lee J; Deng Y; Tao F; Zhang LH
    Biotechniques; 2012 Apr; 52(4):. PubMed ID: 26307248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A guide for in-house design of template-switch-based 5' rapid amplification of cDNA ends systems.
    Pinto FL; Lindblad P
    Anal Biochem; 2010 Feb; 397(2):227-32. PubMed ID: 19837043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Next Generation Sequencing-based analysis of RNA polymerase functions.
    Heyduk T; Heyduk E
    Methods; 2015 Sep; 86():37-44. PubMed ID: 25937393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.