These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 26404151)

  • 1. The Cruciform DNA Mobility Shift Assay: A Tool to Study Proteins That Recognize Bent DNA.
    Stefanovsky VY; Moss T
    Methods Mol Biol; 2015; 1334():195-203. PubMed ID: 26404151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cruciform DNA mobility shift assay: a tool to study proteins that recognize bent DNA.
    Stefanovsky VY; Moss T
    Methods Mol Biol; 2009; 543():537-46. PubMed ID: 19378185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of DNA and Proteins: Electrophoretic Mobility Shift Assay in Asthma.
    García-Solaesa V; Sanz-Lozano CS
    Methods Mol Biol; 2016; 1434():91-105. PubMed ID: 27300533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophoretic mobility-shift assays.
    Carey MF; Peterson CL; Smale ST
    Cold Spring Harb Protoc; 2013 Jul; 2013(7):636-9. PubMed ID: 23818676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophoretic Mobility Shift Assay Using Radiolabeled DNA Probes.
    Poulin-Laprade D; Burrus V
    Methods Mol Biol; 2015; 1334():1-15. PubMed ID: 26404140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophoretic Mobility Shift Assays with GFP-Tagged Proteins (GFP-EMSA).
    Sorenson AE; Schaeffer PM
    Methods Mol Biol; 2020; 2089():159-166. PubMed ID: 31773653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Standard in vitro assays for protein-nucleic acid interactions--gel shift assays for RNA and DNA binding.
    Mitchell SF; Lorsch JR
    Methods Enzymol; 2014; 541():179-96. PubMed ID: 24674072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting Holliday junctions by origin DNA-binding protein of herpes simplex virus type 1.
    Moiseeva ED; Bazhulina NP; Gursky YG; Grokhovsky SL; Surovaya AN; Gursky GV
    J Biomol Struct Dyn; 2017 Mar; 35(4):704-723. PubMed ID: 26987269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the cruciform binding activity of recombinant 14-3-3zeta-MBP fusion protein, its heterodimerization profile with endogenous 14-3-3 isoforms, and effect on mammalian DNA replication in vitro.
    Alvarez D; Callejo M; Shoucri R; Boyer L; Price GB; Zannis-Hadjopoulos M
    Biochemistry; 2003 Jun; 42(23):7205-15. PubMed ID: 12795617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of tissue-specific DNA-protein binding sites by means of two-dimensional electrophoretic mobility shift assay display.
    Chernov IP; Timchenko KA; Akopov SB; Nikolaev LG; Sverdlov ED
    Anal Biochem; 2007 May; 364(1):60-6. PubMed ID: 17359930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ability of HMGB1 protein to bind to intrinsically bent and non-bent DNA sites in the AMPD2 gene amplicon.
    Passos KJ; Fiorini A; Rosado FR; Freitas DV; Lima Neto QA; Pattaro Junior JR; Gaspar VP; Fernandez MA
    Genet Mol Res; 2016 Jun; 15(2):. PubMed ID: 27323150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence-based electrophoretic mobility shift assay in the analysis of DNA-binding proteins.
    Steiner S; Pfannschmidt T
    Methods Mol Biol; 2009; 479():273-89. PubMed ID: 19083181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principles and problems of the electrophoretic mobility shift assay.
    Holden NS; Tacon CE
    J Pharmacol Toxicol Methods; 2011; 63(1):7-14. PubMed ID: 20348003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophoretic mobility shift assay analysis of NF-κB DNA binding.
    Ramaswami S; Hayden MS
    Methods Mol Biol; 2015; 1280():3-13. PubMed ID: 25736740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using reverse electrophoretic mobility shift assay to measure and compare protein-DNA binding affinities.
    Filion GJ; Fouvry L; Defossez PA
    Anal Biochem; 2006 Oct; 357(1):156-8. PubMed ID: 16914111
    [No Abstract]   [Full Text] [Related]  

  • 16. Experimental strategies for the identification of DNA-binding proteins.
    Carey MF; Peterson CL; Smale ST
    Cold Spring Harb Protoc; 2012 Jan; 2012(1):18-33. PubMed ID: 22194258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superhelical DNA as a preferential binding target of 14-3-3γ protein.
    Brázda V; Cechová J; Coufal J; Rumpel S; Jagelská EB
    J Biomol Struct Dyn; 2012; 30(4):371-8. PubMed ID: 22856523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential binding of the Escherichia coli HU, homodimeric forms and heterodimeric form to linear, gapped and cruciform DNA.
    Pinson V; Takahashi M; Rouviere-Yaniv J
    J Mol Biol; 1999 Apr; 287(3):485-97. PubMed ID: 10092454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [An infrared imaging system for detecting electrophoretic mobility shift of DNA-protein complexes].
    Wang YF; Cai DH; Chen H; Mo YY; Yi N; Xing FY
    Nan Fang Yi Ke Da Xue Xue Bao; 2009 Feb; 29(2):289-91. PubMed ID: 19246302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of linked triple helical DNAs possessing high affinity to triple helical DNA binding protein.
    Shibata A; Ueno Y; Shinbo K; Nakanishi M; Matsuda A; Kitade Y
    Bioorg Med Chem Lett; 2006 Mar; 16(5):1410-3. PubMed ID: 16332436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.