These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 26404307)

  • 1. Techniques for Updating Pedestrian Network Data Including Facilities and Obstructions Information for Transportation of Vulnerable People.
    Park S; Bang Y; Yu K
    Sensors (Basel); 2015 Sep; 15(9):24466-86. PubMed ID: 26404307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Improved Map-Matching Technique Based on the Fréchet Distance Approach for Pedestrian Navigation Services.
    Bang Y; Kim J; Yu K
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27782091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An M/M/c/K State-Dependent Model for Pedestrian Flow Control and Design of Facilities.
    Rahman K; Abdul Ghani N; Kamil AA; Mustafa A; Chowdhury MA
    PLoS One; 2015; 10(7):e0133229. PubMed ID: 26196124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards routine, city-scale accessibility metrics: Graph theoretic interpretations of pedestrian access using personalized pedestrian network analysis.
    Bolten N; Caspi A
    PLoS One; 2021; 16(3):e0248399. PubMed ID: 33739983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drift Reduction in Pedestrian Navigation System by Exploiting Motion Constraints and Magnetic Field.
    Ilyas M; Cho K; Baeg SH; Park S
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27618056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling pedestrian travel time and the design of facilities: a queuing approach.
    Rahman K; Ghani NA; Kamil AA; Mustafa A; Kabir Chowdhury MA
    PLoS One; 2013; 8(5):e63503. PubMed ID: 23691055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use Of Smartphones for Ensuring Vulnerable Road User Safety through Path Prediction and Early Warning: An In-Depth Review of Capabilities, Limitations and Their Applications in Cooperative Intelligent Transport Systems.
    Vourgidis I; Maglaras L; Alfakeeh AS; Al-Bayatti AH; Ferrag MA
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32069811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Invisible Salient Landmark Approach to Locating Pedestrians for Predesigned Business Card Route of Pedestrian Navigation.
    Fang Z; Jiang Y; Xu H; Shaw SL; Li L; Geng X
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30235857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normative models and healthcare planning: network-based simulations within a geographic information system environment.
    Walsh SJ; Page PH; Gesler WM
    Health Serv Res; 1997 Jun; 32(2):243-60. PubMed ID: 9180618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time Pedestrian Crossing Recognition for Assistive Outdoor Navigation.
    Fontanesi S; Frigerio A; Fanucci L; Li W
    Stud Health Technol Inform; 2015; 217():963-8. PubMed ID: 26294593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evacuation time estimate for total pedestrian evacuation using a queuing network model and volunteered geographic information.
    Kunwar B; Simini F; Johansson A
    Phys Rev E; 2016 Mar; 93(3):032311. PubMed ID: 27078370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pedestrian Origin-Destination Estimation Based on Multi-Camera Person Re-Identification.
    Li Y; Sarvi M; Khoshelham K; Zhang Y; Jiang Y
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pedestrian crash trends and potential countermeasures from around the world.
    Zegeer CV; Bushell M
    Accid Anal Prev; 2012 Jan; 44(1):3-11. PubMed ID: 22062330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solving Monocular Visual Odometry Scale Factor with Adaptive Step Length Estimates for Pedestrians Using Handheld Devices.
    Antigny N; Uchiyama H; Servières M; Renaudin V; Thomas D; Taniguchi RI
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forecasting Pedestrian Movements Using Recurrent Neural Networks: An Application of Crowd Monitoring Data.
    Duives DC; Wang G; Kim J
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30669293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bimodal Extended Kalman Filter-Based Pedestrian Trajectory Prediction.
    Lin CY; Kau LJ; Chan CY
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nighttime Foreground Pedestrian Detection Based on Three-Dimensional Voxel Surface Model.
    Li J; Zhang F; Wei L; Yang T; Lu Z
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29035295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Social-Aware Pedestrian Trajectory Prediction via States Refinement LSTM.
    Zhang P; Xue J; Zhang P; Zheng N; Ouyang W
    IEEE Trans Pattern Anal Mach Intell; 2022 May; 44(5):2742-2759. PubMed ID: 33196437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Situations of car-to-pedestrian contact.
    Matsui Y; Hitosugi M; Takahashi K; Doi T
    Traffic Inj Prev; 2013; 14(1):73-7. PubMed ID: 23259521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From targeted "black spots" to area-wide pedestrian safety.
    Morency P; Cloutier MS
    Inj Prev; 2006 Dec; 12(6):360-4. PubMed ID: 17170182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.