These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26404479)

  • 1. Understanding the roles of Lys33 and Arg45 in the binding-site stability of LjLTP10, an LTP related to drought stress in Lotus japonicus.
    Valenzuela-Riffo F; Tapia G; Parra-Palma C; Morales-Quintana L
    J Mol Model; 2015 Oct; 21(10):270. PubMed ID: 26404479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of nsLTPs in Lotus japonicus genome reveal a specific epidermal cell member (LjLTP10) regulated by drought stress in aerial organs with a putative role in cutin formation.
    Tapia G; Morales-Quintana L; Parra C; Berbel A; Alcorta M
    Plant Mol Biol; 2013 Jul; 82(4-5):485-501. PubMed ID: 23733601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of barley and maize lipid transfer proteins show different ligand binding preferences in agreement with experimental data.
    Smith LJ; Roby Y; Allison JR; van Gunsteren WF
    Biochemistry; 2013 Jul; 52(30):5029-38. PubMed ID: 23834513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutagenesis study of rice nonspecific lipid transfer protein 2 reveals residues that contribute to structure and ligand binding.
    Cheng CS; Chen MN; Lai YT; Chen T; Lin KF; Liu YJ; Lyu PC
    Proteins; 2008 Feb; 70(3):695-706. PubMed ID: 17729272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into ligand binding by plant lipid transfer proteins: A case study of the lentil Lc-LTP2.
    Melnikova DN; Bogdanov IV; Ignatova AA; Ovchinnikova TV; Finkina EI
    Biochem Biophys Res Commun; 2020 Jul; 528(1):39-45. PubMed ID: 32456792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling, docking and dynamics simulations of a non-specific lipid transfer protein from Peganum harmala L.
    Shi Z; Wang ZJ; Xu HL; Tian Y; Li X; Bao JK; Sun SR; Yue BS
    Comput Biol Chem; 2013 Dec; 47():56-65. PubMed ID: 23891721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stepwise development of structure-activity relationship of diverse PARP-1 inhibitors through comparative and validated in silico modeling techniques and molecular dynamics simulation.
    Halder AK; Saha A; Saha KD; Jha T
    J Biomol Struct Dyn; 2015; 33(8):1756-79. PubMed ID: 25350685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular simulations of β-lactoglobulin complexed with fatty acids reveal the structural basis of ligand affinity to internal and possible external binding sites.
    Evoli S; Guzzi R; Rizzuti B
    Proteins; 2014 Oct; 82(10):2609-19. PubMed ID: 24916607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of hydrophobic and hydrogen bonding interactions on the potency of ß-alanine analogs of G-protein coupled glucagon receptor inhibitors.
    Venugopal PP; Das BK; Soorya E; Chakraborty D
    Proteins; 2020 Feb; 88(2):327-344. PubMed ID: 31443129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational study enlightens the structural role of the alcohol acyltransferase DFGWG motif.
    Morales-Quintana L; Moya-León MA; Herrera R
    J Mol Model; 2015 Aug; 21(8):216. PubMed ID: 26227064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Niemann-Pick type C disease: a QM/MM study of conformational changes in cholesterol in the NPC1(NTD) and NPC2 binding pockets.
    Elghobashi-Meinhardt N
    Biochemistry; 2014 Oct; 53(41):6603-14. PubMed ID: 25251378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein stability and plasticity of the hydrophobic cavity in wheat ns-LTP.
    Sy D; Le Gravier Y; Goodfellow J; Vovelle F
    J Biomol Struct Dyn; 2003 Aug; 21(1):15-29. PubMed ID: 12854956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knockdown of LjALD1, AGD2-like defense response protein 1, influences plant growth and nodulation in Lotus japonicus.
    Chen W; Li X; Tian L; Wu P; Li M; Jiang H; Chen Y; Wu G
    J Integr Plant Biol; 2014 Nov; 56(11):1034-41. PubMed ID: 24797909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the centromere-specific histone H3 variant in Lotus japonicus.
    Tek AL; Kashihara K; Murata M; Nagaki K
    Gene; 2014 Mar; 538(1):8-11. PubMed ID: 24462968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic characterization of the DmsD binding site for the DmsA twin-arginine motif.
    Winstone TM; Turner RJ
    Biochemistry; 2015 Mar; 54(11):2040-51. PubMed ID: 25659414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of portal region lysine residues in electrostatic interactions between heart fatty acid binding protein and phospholipid membranes.
    Herr FM; Aronson J; Storch J
    Biochemistry; 1996 Jan; 35(4):1296-303. PubMed ID: 8573586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel lipid transfer protein from the dill Anethum graveolens L.: isolation, structure, heterologous expression, and functional characteristics.
    Melnikova DN; Mineev KS; Finkina EI; Arseniev AS; Ovchinnikova TV
    J Pept Sci; 2016 Jan; 22(1):59-66. PubMed ID: 26680443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico characterization of binding mode of CCR8 inhibitor: homology modeling, docking and membrane based MD simulation study.
    Gadhe CG; Balupuri A; Cho SJ
    J Biomol Struct Dyn; 2015; 33(11):2491-510. PubMed ID: 25617117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular determinants of ligand binding modes in the histamine H(4) receptor: linking ligand-based three-dimensional quantitative structure-activity relationship (3D-QSAR) models to in silico guided receptor mutagenesis studies.
    Istyastono EP; Nijmeijer S; Lim HD; van de Stolpe A; Roumen L; Kooistra AJ; Vischer HF; de Esch IJ; Leurs R; de Graaf C
    J Med Chem; 2011 Dec; 54(23):8136-47. PubMed ID: 22003888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational study of ligand binding in lipid transfer proteins: Structures, interfaces, and free energies of protein-lipid complexes.
    Pacios LF; Gómez-Casado C; Tordesillas L; Palacín A; Sánchez-Monge R; Díaz-Perales A
    J Comput Chem; 2012 Aug; 33(22):1831-44. PubMed ID: 22622698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.