BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 26404732)

  • 1. Nitrogen-Doped Carbon Nanotube Arrays for High-Efficiency Electrochemical Reduction of CO2: On the Understanding of Defects, Defect Density, and Selectivity.
    Sharma PP; Wu J; Yadav RM; Liu M; Wright CJ; Tiwary CS; Yakobson BI; Lou J; Ajayan PM; Zhou XD
    Angew Chem Int Ed Engl; 2015 Nov; 54(46):13701-5. PubMed ID: 26404732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achieving Highly Efficient, Selective, and Stable CO2 Reduction on Nitrogen-Doped Carbon Nanotubes.
    Wu J; Yadav RM; Liu M; Sharma PP; Tiwary CS; Ma L; Zou X; Zhou XD; Yakobson BI; Lou J; Ajayan PM
    ACS Nano; 2015 May; 9(5):5364-71. PubMed ID: 25897553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide.
    Xu J; Kan Y; Huang R; Zhang B; Wang B; Wu KH; Lin Y; Sun X; Li Q; Centi G; Su D
    ChemSusChem; 2016 May; 9(10):1085-9. PubMed ID: 27100272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of Nitrogen Defects for Efficient Reduction of CO2 via Two-Electron Pathway on Three-Dimensional Graphene Foam.
    Wu J; Liu M; Sharma PP; Yadav RM; Ma L; Yang Y; Zou X; Zhou XD; Vajtai R; Yakobson BI; Lou J; Ajayan PM
    Nano Lett; 2016 Jan; 16(1):466-70. PubMed ID: 26651056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO2 to CO and CH4.
    Li W; Seredych M; Rodríguez-Castellón E; Bandosz TJ
    ChemSusChem; 2016 Mar; 9(6):606-16. PubMed ID: 26835880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrrolic-nitrogen doped graphene: a metal-free electrocatalyst with high efficiency and selectivity for the reduction of carbon dioxide to formic acid: a computational study.
    Liu Y; Zhao J; Cai Q
    Phys Chem Chem Phys; 2016 Feb; 18(7):5491-8. PubMed ID: 26863176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Nitrogen-Doped Carbon Catalyst for Electrochemical CO
    Jhong HM; Tornow CE; Smid B; Gewirth AA; Lyth SM; Kenis PJ
    ChemSusChem; 2017 Mar; 10(6):1094-1099. PubMed ID: 27791338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step hydrothermal synthesis of nitrogen-doped carbon nanotubes as an efficient electrocatalyst for oxygen reduction reactions.
    Chen L; Cui X; Wang Y; Wang M; Cui F; Wei C; Huang W; Hua Z; Zhang L; Shi J
    Chem Asian J; 2014 Oct; 9(10):2915-20. PubMed ID: 25100339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Electrochemical Reduction of Carbon Dioxide to Acetate on Nitrogen-Doped Nanodiamond.
    Liu Y; Chen S; Quan X; Yu H
    J Am Chem Soc; 2015 Sep; 137(36):11631-6. PubMed ID: 26322741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonprecious Catalyst for Three-Phase Contact in a Proton Exchange Membrane CO
    Ghosh S; Garapati MS; Ghosh A; Sundara R
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40432-40442. PubMed ID: 31585040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic Pyridinic Nitrogen as Highly Active Metal-Free Coordination Sites at the Biotic-Abiotic Interface for Bio-Electrochemical CO
    Xia R; Cheng J; Chen Z; Zhang Z; Zhou X; Zhou J; Zhang M
    Small; 2024 May; 20(18):e2306331. PubMed ID: 38054812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of nitrogen-doped carbon nanotubes with different morphologies from melamine-formaldehyde resin.
    Yao Y; Zhang B; Shi J; Yang Q
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7413-20. PubMed ID: 25790324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High reaction activity of nitrogen-doped carbon nanotubes toward the electrooxidation of nitric oxide.
    Xu X; Yang L; Jiang S; Hu Z; Liu S
    Chem Commun (Camb); 2011 Jul; 47(25):7137-9. PubMed ID: 21614368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential dependent and structural selectivity of the oxygen reduction reaction on nitrogen-doped carbon nanotubes: a density functional theory study.
    Zhang P; Lian JS; Jiang Q
    Phys Chem Chem Phys; 2012 Sep; 14(33):11715-23. PubMed ID: 22828582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Selective and Stable Reduction of CO2 to CO by a Graphitic Carbon Nitride/Carbon Nanotube Composite Electrocatalyst.
    Lu X; Tan TH; Ng YH; Amal R
    Chemistry; 2016 Aug; 22(34):11991-6. PubMed ID: 27312815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly effective sites and selectivity of nitrogen-doped graphene/CNT catalysts for CO
    Chai GL; Guo ZX
    Chem Sci; 2016 Feb; 7(2):1268-1275. PubMed ID: 29910883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of nickel-based electrocatalyst size on electrochemical carbon dioxide reduction: A density functional theory study.
    Wang F; Meng Y; Chen X; Zhang L; Li G; Shen Z; Wang Y; Cao Y
    J Colloid Interface Sci; 2022 Jun; 615():587-596. PubMed ID: 35152078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MOF-derived nitrogen-doped nanoporous carbon for electroreduction of CO
    Zheng Y; Cheng P; Xu J; Han J; Wang D; Hao C; Alanagh HR; Long C; Shi X; Tang Z
    Nanoscale; 2019 Mar; 11(11):4911-4917. PubMed ID: 30830129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient preparation of nitrogen-doped lignin-based carbon nanotubes and the selectivity of nitrogen speciation for photothermal therapy.
    Peng Y; Guo B; Wang W; Yu P; Wu Z; Shao L; Luo W
    Int J Biol Macromol; 2023 May; 238():124127. PubMed ID: 36958448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrocatalytically switchable CO2 capture: first principle computational exploration of carbon nanotubes with pyridinic nitrogen.
    Jiao Y; Zheng Y; Smith SC; Du A; Zhu Z
    ChemSusChem; 2014 Feb; 7(2):435-41. PubMed ID: 24488677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.