These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 26404753)
1. Bone marrow derived myeloid cells orchestrate antiangiogenic resistance in glioblastoma through coordinated molecular networks. Achyut BR; Shankar A; Iskander AS; Ara R; Angara K; Zeng P; Knight RA; Scicli AG; Arbab AS Cancer Lett; 2015 Dec; 369(2):416-26. PubMed ID: 26404753 [TBL] [Abstract][Full Text] [Related]
2. Chimeric Mouse model to track the migration of bone marrow derived cells in glioblastoma following anti-angiogenic treatments. Achyut BR; Shankar A; Iskander AS; Ara R; Knight RA; Scicli AG; Arbab AS Cancer Biol Ther; 2016; 17(3):280-90. PubMed ID: 26797476 [TBL] [Abstract][Full Text] [Related]
3. Major Challenges and Potential Microenvironment-Targeted Therapies in Glioblastoma. Arbab AS; Rashid MH; Angara K; Borin TF; Lin PC; Jain M; Achyut BR Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29258180 [TBL] [Abstract][Full Text] [Related]
4. Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Piao Y; Liang J; Holmes L; Zurita AJ; Henry V; Heymach JV; de Groot JF Neuro Oncol; 2012 Nov; 14(11):1379-92. PubMed ID: 22965162 [TBL] [Abstract][Full Text] [Related]
5. Vascular mimicry in glioblastoma following anti-angiogenic and anti-20-HETE therapies. Angara K; Rashid MH; Shankar A; Ara R; Iskander A; Borin TF; Jain M; Achyut BR; Arbab AS Histol Histopathol; 2017 Sep; 32(9):917-928. PubMed ID: 27990624 [TBL] [Abstract][Full Text] [Related]
6. Canonical NFκB signaling in myeloid cells is required for the glioblastoma growth. Achyut BR; Angara K; Jain M; Borin TF; Rashid MH; Iskander ASM; Ara R; Kolhe R; Howard S; Venugopal N; Rodriguez PC; Bradford JW; Arbab AS Sci Rep; 2017 Oct; 7(1):13754. PubMed ID: 29062041 [TBL] [Abstract][Full Text] [Related]
7. Gene signatures of quiescent glioblastoma cells reveal mesenchymal shift and interactions with niche microenvironment. Tejero R; Huang Y; Katsyv I; Kluge M; Lin JY; Tome-Garcia J; Daviaud N; Wang Y; Zhang B; Tsankova NM; Friedel CC; Zou H; Friedel RH EBioMedicine; 2019 Apr; 42():252-269. PubMed ID: 30952620 [TBL] [Abstract][Full Text] [Related]
8. Decrease of VEGF-A in myeloid cells attenuates glioma progression and prolongs survival in an experimental glioma model. Osterberg N; Ferrara N; Vacher J; Gaedicke S; Niedermann G; Weyerbrock A; Doostkam S; Schaefer HE; Plate KH; Machein MR Neuro Oncol; 2016 Jul; 18(7):939-49. PubMed ID: 26951383 [TBL] [Abstract][Full Text] [Related]
9. Aspirin Affects Tumor Angiogenesis and Sensitizes Human Glioblastoma Endothelial Cells to Temozolomide, Bevacizumab, and Sunitinib, Impairing Vascular Endothelial Growth Factor-Related Signaling. Navone SE; Guarnaccia L; Cordiglieri C; Crisà FM; Caroli M; Locatelli M; Schisano L; Rampini P; Miozzo M; La Verde N; Riboni L; Campanella R; Marfia G World Neurosurg; 2018 Dec; 120():e380-e391. PubMed ID: 30144594 [TBL] [Abstract][Full Text] [Related]
10. Surrogate markers predict angiogenic potential and survival in patients with glioblastoma multiforme. Greenfield JP; Jin DK; Young LM; Christos PJ; Abrey L; Rafii S; Gutin PH Neurosurgery; 2009 May; 64(5):819-26; discussion 826-7. PubMed ID: 19404145 [TBL] [Abstract][Full Text] [Related]
11. Changes in the tumor microenvironment and outcome for TME-targeting therapy in glioblastoma: A pilot study. Ali S; Borin TF; Piranlioglu R; Ara R; Lebedyeva I; Angara K; Achyut BR; Arbab AS; Rashid MH PLoS One; 2021; 16(2):e0246646. PubMed ID: 33544755 [TBL] [Abstract][Full Text] [Related]
12. Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma. Scholz A; Harter PN; Cremer S; Yalcin BH; Gurnik S; Yamaji M; Di Tacchio M; Sommer K; Baumgarten P; Bähr O; Steinbach JP; Trojan J; Glas M; Herrlinger U; Krex D; Meinhardt M; Weyerbrock A; Timmer M; Goldbrunner R; Deckert M; Braun C; Schittenhelm J; Frueh JT; Ullrich E; Mittelbronn M; Plate KH; Reiss Y EMBO Mol Med; 2016 Jan; 8(1):39-57. PubMed ID: 26666269 [TBL] [Abstract][Full Text] [Related]
14. Microglia/macrophages express alternative proangiogenic factors depending on granulocyte content in human glioblastoma. Blank A; Kremenetskaia I; Urbantat RM; Acker G; Turkowski K; Radke J; Schneider UC; Vajkoczy P; Brandenburg S J Pathol; 2021 Feb; 253(2):160-173. PubMed ID: 33044746 [TBL] [Abstract][Full Text] [Related]
15. The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: perspectives for therapeutic implications. Tamura R; Tanaka T; Akasaki Y; Murayama Y; Yoshida K; Sasaki H Med Oncol; 2019 Nov; 37(1):2. PubMed ID: 31713115 [TBL] [Abstract][Full Text] [Related]
16. Anti-VEGFR2 driven nuclear translocation of VEGFR2 and acquired malignant hallmarks are mutation dependent in glioblastoma. Shankar A; Jain M; Lim MJ; Angara K; Zeng P; Arbab SA; Iskander A; Ara R; Arbab AS; Achyut BR J Cancer Sci Ther; 2016; 8(7):172-178. PubMed ID: 28149448 [TBL] [Abstract][Full Text] [Related]
17. Hypoxia coordinates the spatial landscape of myeloid cells within glioblastoma to affect survival. Haley MJ; Bere L; Minshull J; Georgaka S; Garcia-Martin N; Howell G; Coope DJ; Roncaroli F; King A; Wedge DC; Allan SM; Pathmanaban ON; Brough D; Couper KN Sci Adv; 2024 May; 10(20):eadj3301. PubMed ID: 38758780 [TBL] [Abstract][Full Text] [Related]
18. The Sabotaging Role of Myeloid Cells in Anti-Angiogenic Therapy: Coordination of Angiogenesis and Immune Suppression by Hypoxia. Li C; Liu T; Bazhin AV; Yang Y J Cell Physiol; 2017 Sep; 232(9):2312-2322. PubMed ID: 27935039 [TBL] [Abstract][Full Text] [Related]
19. Recruitment of bone marrow derived cells during anti-angiogenic therapy in GBM: the potential of combination strategies. Boer JC; Walenkamp AM; den Dunnen WF Crit Rev Oncol Hematol; 2014 Oct; 92(1):38-48. PubMed ID: 24933160 [TBL] [Abstract][Full Text] [Related]
20. Novel MET/TIE2/VEGFR2 inhibitor altiratinib inhibits tumor growth and invasiveness in bevacizumab-resistant glioblastoma mouse models. Piao Y; Park SY; Henry V; Smith BD; Tiao N; Flynn DL; de Groot JF Neuro Oncol; 2016 Sep; 18(9):1230-41. PubMed ID: 26965451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]