BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 26404873)

  • 1. Contribution of regional brain melanocortin receptor subtypes to elevated activity energy expenditure in lean, active rats.
    Shukla C; Koch LG; Britton SL; Cai M; Hruby VJ; Bednarek M; Novak CM
    Neuroscience; 2015 Dec; 310():252-67. PubMed ID: 26404873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic capacity modulates adaptive thermogenesis: Contribution of non-resting energy expenditure.
    Mukherjee SD; Koch LG; Britton SL; Novak CM
    Physiol Behav; 2020 Oct; 225():113048. PubMed ID: 32628949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Region-specific differences in brain melanocortin receptors in rats of the lean phenotype.
    Shukla C; Britton SL; Koch LG; Novak CM
    Neuroreport; 2012 Jul; 23(10):596-600. PubMed ID: 22643233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physically active rats lose more weight during calorie restriction.
    Smyers ME; Bachir KZ; Britton SL; Koch LG; Novak CM
    Physiol Behav; 2015 Feb; 139():303-13. PubMed ID: 25449411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inherently Lean Rats Have Enhanced Activity and Skeletal Muscle Response to Central Melanocortin Receptors.
    Gavini CK; Britton SL; Koch LG; Novak CM
    Obesity (Silver Spring); 2018 May; 26(5):885-894. PubMed ID: 29566460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous activity, economy of activity, and resistance to diet-induced obesity in rats bred for high intrinsic aerobic capacity.
    Novak CM; Escande C; Burghardt PR; Zhang M; Barbosa MT; Chini EN; Britton SL; Koch LG; Akil H; Levine JA
    Horm Behav; 2010 Aug; 58(3):355-67. PubMed ID: 20350549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leanness and heightened nonresting energy expenditure: role of skeletal muscle activity thermogenesis.
    Gavini CK; Mukherjee S; Shukla C; Britton SL; Koch LG; Shi H; Novak CM
    Am J Physiol Endocrinol Metab; 2014 Mar; 306(6):E635-47. PubMed ID: 24398400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical Activity, Energy Expenditure, and Defense of Body Weight in Melanocortin 4 Receptor-Deficient Male Rats.
    Almundarij TI; Smyers ME; Spriggs A; Heemstra LA; Beltz L; Dyne E; Ridenour C; Novak CM
    Sci Rep; 2016 Nov; 6():37435. PubMed ID: 27886210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppressed sympathetic outflow to skeletal muscle, muscle thermogenesis, and activity energy expenditure with calorie restriction.
    Almundarij TI; Gavini CK; Novak CM
    Physiol Rep; 2017 Feb; 5(4):. PubMed ID: 28242830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melanocortin receptor subtypes are expressed on cells in the oligodendroglial lineage and signal ACTH protection.
    Benjamins JA; Nedelkoska L; Lisak RP
    J Neurosci Res; 2018 Mar; 96(3):427-435. PubMed ID: 28877366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The critical role of the melanocortin system in the control of energy balance.
    Seeley RJ; Drazen DL; Clegg DJ
    Annu Rev Nutr; 2004; 24():133-49. PubMed ID: 15189116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced weight and fat loss from long-term intermittent fasting in obesity-prone, low-fitness rats.
    Smyers ME; Koch LG; Britton SL; Wagner JG; Novak CM
    Physiol Behav; 2021 Mar; 230():113280. PubMed ID: 33285179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feeding, body weight, and sensitivity to non-ingestive reward stimuli during and after 12-day continuous central infusions of melanocortin receptor ligands.
    Cabeza de Vaca S; Hao J; Afroz T; Krahne LL; Carr KD
    Peptides; 2005 Nov; 26(11):2314-21. PubMed ID: 15894406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biased signaling at neural melanocortin receptors in regulation of energy homeostasis.
    Yang LK; Tao YX
    Biochim Biophys Acta Mol Basis Dis; 2017 Oct; 1863(10 Pt A):2486-2495. PubMed ID: 28433713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feeding effects of melanocortin ligands--a historical perspective.
    Irani BG; Haskell-Luevano C
    Peptides; 2005 Oct; 26(10):1788-99. PubMed ID: 16046247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constitutive activity of neural melanocortin receptors.
    Tao YX; Huang H; Wang ZQ; Yang F; Williams JN; Nikiforovich GV
    Methods Enzymol; 2010; 484():267-79. PubMed ID: 21036237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chimeras of the agouti-related protein: insights into agonist and antagonist selectivity of melanocortin receptors.
    Jackson PJ; Yu B; Hunrichs B; Thompson DA; Chai B; Gantz I; Millhauser GL
    Peptides; 2005 Oct; 26(10):1978-87. PubMed ID: 16009463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AgRP(83-132) and SHU9119 differently affect activity-based anorexia.
    Hillebrand JJ; Kas MJ; Scheurink AJ; van Dijk G; Adan RA
    Eur Neuropsychopharmacol; 2006 Aug; 16(6):403-12. PubMed ID: 16360312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gestational weight gain by reduced brain melanocortin activity affects offspring energy balance in rats.
    Heinsbroek AC; van Dijk G
    Int J Obes (Lond); 2009 Jan; 33(1):104-14. PubMed ID: 19002145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuropeptidergic mediators of spontaneous physical activity and non-exercise activity thermogenesis.
    Teske JA; Billington CJ; Kotz CM
    Neuroendocrinology; 2008; 87(2):71-90. PubMed ID: 17984627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.