These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 26405033)

  • 41. Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria.
    Ikeuchi M; Ishizuka T
    Photochem Photobiol Sci; 2008 Oct; 7(10):1159-67. PubMed ID: 18846279
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photoconversion and Fluorescence Properties of a Red/Green-Type Cyanobacteriochrome AM1_C0023g2 That Binds Not Only Phycocyanobilin But Also Biliverdin.
    Fushimi K; Nakajima T; Aono Y; Yamamoto T; Ni-Ni-Win ; Ikeuchi M; Sato M; Narikawa R
    Front Microbiol; 2016; 7():588. PubMed ID: 27242674
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 1H, 13C, and 15N chemical shift assignments of cyanobacteriochrome NpR6012g4 in the green-absorbing photoproduct state.
    Lim S; Yu Q; Rockwell NC; Martin SS; Lagarias JC; Ames JB
    Biomol NMR Assign; 2016 Apr; 10(1):157-61. PubMed ID: 26537963
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of Red/Green Cyanobacteriochrome NpR6012g4 by Solution Nuclear Magnetic Resonance Spectroscopy: A Protonated Bilin Ring System in Both Photostates.
    Rockwell NC; Martin SS; Lim S; Lagarias JC; Ames JB
    Biochemistry; 2015 Apr; 54(16):2581-600. PubMed ID: 25843271
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A new type of dual-Cys cyanobacteriochrome GAF domain found in cyanobacterium Acaryochloris marina, which has an unusual red/blue reversible photoconversion cycle.
    Narikawa R; Enomoto G; Ni-Ni-Win ; Fushimi K; Ikeuchi M
    Biochemistry; 2014 Aug; 53(31):5051-9. PubMed ID: 25029277
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Primary and secondary photodynamics of the violet/orange dual-cysteine NpF2164g3 cyanobacteriochrome domain from Nostoc punctiforme.
    Gottlieb SM; Kim PW; Corley SC; Madsen D; Hanke SJ; Chang CW; Rockwell NC; Martin SS; Lagarias JC; Larsen DS
    Biochemistry; 2014 Feb; 53(6):1029-40. PubMed ID: 24437620
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Primary photodynamics of the green/red-absorbing photoswitching regulator of the chromatic adaptation E domain from Fremyella diplosiphon.
    Gottlieb SM; Kim PW; Rockwell NC; Hirose Y; Ikeuchi M; Lagarias JC; Larsen DS
    Biochemistry; 2013 Nov; 52(46):8198-208. PubMed ID: 24147541
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cyanobacteriochrome TePixJ of Thermosynechococcus elongatus harbors phycoviolobilin as a chromophore.
    Ishizuka T; Narikawa R; Kohchi T; Katayama M; Ikeuchi M
    Plant Cell Physiol; 2007 Sep; 48(9):1385-90. PubMed ID: 17715149
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein-chromophore interactions controlling photoisomerization in red/green cyanobacteriochromes.
    Rockwell NC; Moreno MV; Martin SS; Lagarias JC
    Photochem Photobiol Sci; 2022 Apr; 21(4):471-491. PubMed ID: 35411484
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of the Forward and Reverse Photocycle Dynamics of Two Highly Similar Canonical Red/Green Cyanobacteriochromes Reveals Unexpected Differences.
    Kirpich JS; Chang CW; Franse J; Yu Q; Escobar FV; Jenkins AJ; Martin SS; Narikawa R; Ames JB; Lagarias JC; Larsen DS
    Biochemistry; 2021 Feb; 60(4):274-288. PubMed ID: 33439010
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Conformational change in an engineered biliverdin-binding cyanobacteriochrome during the photoconversion process.
    Takeda Y; Ohtsu I; Suzuki T; Nakasone Y; Fushimi K; Ikeuchi M; Terazima M; Dohra H; Narikawa R
    Arch Biochem Biophys; 2023 Sep; 745():109715. PubMed ID: 37549803
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The complete genome of a cyanobacterium from a soda lake reveals the presence of the components of CO
    Kupriyanova EV; Cho SM; Park YI; Pronina NA; Los DA
    Photosynth Res; 2016 Dec; 130(1-3):151-165. PubMed ID: 26908147
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cyanochromes are blue/green light photoreversible photoreceptors defined by a stable double cysteine linkage to a phycoviolobilin-type chromophore.
    Ulijasz AT; Cornilescu G; von Stetten D; Cornilescu C; Velazquez Escobar F; Zhang J; Stankey RJ; Rivera M; Hildebrandt P; Vierstra RD
    J Biol Chem; 2009 Oct; 284(43):29757-72. PubMed ID: 19671704
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hydrogen Bond between a Tyrosine Residue and the
    Altmayer S; Jähnigen S; Köhler L; Wiebeler C; Song C; Sebastiani D; Matysik J
    J Phys Chem B; 2021 Feb; 125(5):1331-1342. PubMed ID: 33523656
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Conservation and diversity in the secondary forward photodynamics of red/green cyanobacteriochromes.
    Jenkins AJ; Gottlieb SM; Chang CW; Hayer RJ; Martin SS; Lagarias JC; Larsen DS
    Photochem Photobiol Sci; 2019 Oct; 18(10):2539-2552. PubMed ID: 31528964
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Distinctive Properties of Dark Reversion Kinetics between Two Red/Green-Type Cyanobacteriochromes and their Application in the Photoregulation of cAMP Synthesis.
    Fushimi K; Enomoto G; Ikeuchi M; Narikawa R
    Photochem Photobiol; 2017 May; 93(3):681-691. PubMed ID: 28500699
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Protein Engineering of Dual-Cys Cyanobacteriochrome AM1_1186g2 for Biliverdin Incorporation and Far-Red/Blue Reversible Photoconversion.
    Kuwasaki Y; Miyake K; Fushimi K; Takeda Y; Ueda Y; Nakajima T; Ikeuchi M; Sato M; Narikawa R
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31208089
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structures of cyanobacteriochromes from phototaxis regulators AnPixJ and TePixJ reveal general and specific photoconversion mechanism.
    Narikawa R; Ishizuka T; Muraki N; Shiba T; Kurisu G; Ikeuchi M
    Proc Natl Acad Sci U S A; 2013 Jan; 110(3):918-23. PubMed ID: 23256156
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Computational identification of key residues regulating fluorescence emission in a red/green cyanobacteriochrome.
    Kannan P; Oh J; Yeon YJ; Park YI; Seo MH; Park K
    Proteins; 2024 Jan; 92(1):106-116. PubMed ID: 37646483
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The cyanobacteriochrome, TePixJ, isomerizes its own chromophore by converting phycocyanobilin to phycoviolobilin.
    Ishizuka T; Kamiya A; Suzuki H; Narikawa R; Noguchi T; Kohchi T; Inomata K; Ikeuchi M
    Biochemistry; 2011 Feb; 50(6):953-61. PubMed ID: 21197959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.