These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 2640559)
1. Spontaneous phosphatidylcholine transfer by collision between vesicles at high lipid concentration. Jones JD; Thompson TE Biochemistry; 1989 Jan; 28(1):129-34. PubMed ID: 2640559 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of cholesterol and phosphatidylcholine exchange or transfer between unilamellar vesicles. McLean LR; Phillips MC Biochemistry; 1981 May; 20(10):2893-900. PubMed ID: 7195733 [TBL] [Abstract][Full Text] [Related]
3. Exploration of physical principles underlying lipid regular distribution: effects of pressure, temperature, and radius of curvature on E/M dips in pyrene-labeled PC/DMPC binary mixtures. Chong PL; Tang D; Sugar IP Biophys J; 1994 Jun; 66(6):2029-38. PubMed ID: 8075336 [TBL] [Abstract][Full Text] [Related]
4. Transfer of long-chain fluorescent free fatty acids between unilamellar vesicles. Storch J; Kleinfeld AM Biochemistry; 1986 Apr; 25(7):1717-26. PubMed ID: 3707905 [TBL] [Abstract][Full Text] [Related]
5. Spontaneous transfer of ganglioside GM1 between phospholipid vesicles. Brown RE; Thompson TE Biochemistry; 1987 Aug; 26(17):5454-60. PubMed ID: 3676263 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of the spontaneous transfer of unconjugated bilirubin between small unilamellar phosphatidylcholine vesicles. Zucker SD; Storch J; Zeidel ML; Gollan JL Biochemistry; 1992 Mar; 31(12):3184-92. PubMed ID: 1554704 [TBL] [Abstract][Full Text] [Related]
7. Lateral distribution of a pyrene-labeled phosphatidylcholine in phosphatidylcholine bilayers: fluorescence phase and modulation study. Hresko RC; Sugár IP; Barenholz Y; Thompson TE Biochemistry; 1986 Jul; 25(13):3813-23. PubMed ID: 3741837 [TBL] [Abstract][Full Text] [Related]
8. Glucocerebroside transfer between phosphatidylcholine bilayers. Correa-Freire MC; Barenholz Y; Thompson TE Biochemistry; 1982 Mar; 21(6):1244-8. PubMed ID: 7074080 [TBL] [Abstract][Full Text] [Related]
9. Effects of temperature and lipid composition on the serum albumin-induced aggregation and fusion of small unilamellar vesicles. Schenkman S; Araujo PS; Dijkman R; Quina FH; Chaimovich H Biochim Biophys Acta; 1981 Dec; 649(3):633-47. PubMed ID: 7317422 [TBL] [Abstract][Full Text] [Related]
10. Kinetics and mechanism of long-chain fatty acid transport into phosphatidylcholine vesicles from various donor systems. Thomas RM; Baici A; Werder M; Schulthess G; Hauser H Biochemistry; 2002 Feb; 41(5):1591-601. PubMed ID: 11814353 [TBL] [Abstract][Full Text] [Related]
11. Kinetic Analysis of the Methyl-β-cyclodextrin-Mediated Intervesicular Transfer of Pyrene-Labeled Phospholipids. Sugiura T; Ikeda K; Nakano M Langmuir; 2016 Dec; 32(51):13697-13705. PubMed ID: 27936747 [TBL] [Abstract][Full Text] [Related]
12. Formation of asymmetric phospholipid membranes via spontaneous transfer of fluorescent lipid analogues between vesicle populations. Pagano RE; Martin OC; Schroit AJ; Struck DK Biochemistry; 1981 Aug; 20(17):4920-7. PubMed ID: 7295659 [TBL] [Abstract][Full Text] [Related]
13. Measurement of spontaneous transfer and transbilayer movement of BODIPY-labeled lipids in lipid vesicles. Bai J; Pagano RE Biochemistry; 1997 Jul; 36(29):8840-8. PubMed ID: 9220970 [TBL] [Abstract][Full Text] [Related]
14. Interaction of intestinal brush border membrane vesicles with small unilamellar phospholipid vesicles. Exchange of lipids between membranes is mediated by collisional contact. Mütsch B; Gains N; Hauser H Biochemistry; 1986 Apr; 25(8):2134-40. PubMed ID: 3011078 [TBL] [Abstract][Full Text] [Related]
16. Determination of the topography of cytochrome b5 in lipid vesicles by fluorescence quenching. Markello T; Zlotnick A; Everett J; Tennyson J; Holloway PW Biochemistry; 1985 Jun; 24(12):2895-901. PubMed ID: 4016077 [TBL] [Abstract][Full Text] [Related]
17. Spontaneous cholesterol movement between lipid vesicles and monkey small intestinal brush border membrane. Sadana T; Sanyal SN; Majumdar S; Dhall K; Chakravarti RN Biochem Cell Biol; 1986 Jun; 64(6):575-82. PubMed ID: 3741674 [TBL] [Abstract][Full Text] [Related]
18. Oxygen quenching of pyrene-lipid fluorescence in phosphatidylcholine vesicles. A probe for membrane organization. Chong PL; Thompson TE Biophys J; 1985 May; 47(5):613-21. PubMed ID: 4016182 [TBL] [Abstract][Full Text] [Related]
19. Phospholipid lateral organization in synthetic membranes as monitored by pyrene-labeled phospholipids: effects of temperature and prothrombin fragment 1 binding. Jones ME; Lentz BR Biochemistry; 1986 Feb; 25(3):567-74. PubMed ID: 3754153 [TBL] [Abstract][Full Text] [Related]
20. Probing for preferential interactions among sphingolipids in bilayer vesicles using the glycolipid transfer protein. Mattjus P; Kline A; Pike HM; Molotkovsky JG; Brown RE Biochemistry; 2002 Jan; 41(1):266-73. PubMed ID: 11772025 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]