These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 26405841)

  • 1. Design and testing of an anti-scattering grid for medium-energy X-ray flash radiography.
    Liu WJ; Fan C
    Appl Radiat Isot; 2016 Jan; 107():24-28. PubMed ID: 26405841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sub-megavolt anti-scattering grid: Fabrication, testing, and Monte Carlo simulation.
    Liu WJ; Chen K; Jing YF; Hu HS; Cheng JM; Qian WX; Liu J
    Rev Sci Instrum; 2018 Aug; 89(8):085119. PubMed ID: 30184666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility and its characteristics of CO2 laser micromachining-based PMMA anti-scattering grid estimated by MCNP code simulation.
    Bae JW; Kim HR
    J Xray Sci Technol; 2018; 26(2):273-280. PubMed ID: 29154314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Monte Carlo study of verification imaging in high dose rate brachytherapy.
    Sheikh-Bagheri D; Munro P
    Med Phys; 1998 Apr; 25(4):404-14. PubMed ID: 9571606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effects of high-strip density anti-scatter grid on image quality and radiation dose].
    Wamser G; Maier W; Aichinger H; Bohndorf K
    Rofo; 1997 Jun; 166(6):475-80. PubMed ID: 9272997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dose optimization in pediatric cardiac x-ray imaging.
    Gislason AJ; Davies AG; Cowen AR
    Med Phys; 2010 Oct; 37(10):5258-69. PubMed ID: 21089760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray scatter in megavoltage transmission radiography: physical characteristics and influence on image quality.
    Jaffray DA; Battista JJ; Fenster A; Munro P
    Med Phys; 1994 Jan; 21(1):45-60. PubMed ID: 8164588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser alignment system for high-quality portable radiography.
    MacMahon H; Yasillo NJ; Carlin M
    Radiographics; 1992 Jan; 12(1):111-20. PubMed ID: 1734456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of a grid moirĂ© pattern by integrating a carbon-interspaced high precision x-ray grid with a digital radiographic detector.
    Yoon JW; Park YG; Park CJ; Kim DI; Lee JH; Chung NK; Choe BY; Suh TS; Lee HK
    Med Phys; 2007 Nov; 34(11):4092-7. PubMed ID: 18072475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrast and scatter in x-ray imaging.
    Barnes GT
    Radiographics; 1991 Mar; 11(2):307-23. PubMed ID: 2028065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo study of grid performance in diagnostic radiology: factors which affect the selection of tube potential and grid ratio.
    Sandborg M; Dance DR; Carlsson GA; Persliden J
    Br J Radiol; 1993 Dec; 66(792):1164-76. PubMed ID: 8293262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of scattered radiation in projection mammography: four practical methods compared.
    Salvagnini E; Bosmans H; Struelens L; Marshall NW
    Med Phys; 2012 Jun; 39(6):3167-80. PubMed ID: 22755701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of radiography applications using x-ray beams emitted by compact accelerators. Part I. Monte Carlo study of the hard x-ray spectrum.
    Marziani M; Taibi A; Di Domenico G; Gambaccini M
    Med Phys; 2009 Oct; 36(10):4683-701. PubMed ID: 19928100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study between mobile computed radiography and mobile flat-panel radiography for bedside chest radiography: impact of an antiscatter grid on the visibility of selected diagnostically relevant structures.
    Lehnert T; Naguib NN; Wutzler S; Bauer RW; Kerl JM; Burkhard T; Schulz B; Larson MC; Ackermann H; Vogl TJ; Balzer JO
    Invest Radiol; 2014 Jan; 49(1):1-6. PubMed ID: 24019019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo study of grid performance in diagnostic radiology: task dependent optimization for screen-film imaging.
    Sandborg M; Dance DR; Carlsson GA; Persliden J
    Br J Radiol; 1994 Jan; 67(793):76-85. PubMed ID: 8298879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulation of the effect of focal spot size on contrast-detail detectability.
    Poletti J; McLean D
    Australas Phys Eng Sci Med; 2012 Mar; 35(1):41-8. PubMed ID: 22143903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scanning slit chest radiography: a practical and efficient scatter control design.
    Barnes GT; Wu X; Sanders PC
    Radiology; 1994 Feb; 190(2):525-8. PubMed ID: 8284410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blurring artifacts in megavoltage radiography with a flat-panel imaging system: comparison of Monte Carlo simulations with measurements.
    Schach von Wittenau AE; Logan CM; Aufderheide MB; Slone DM
    Med Phys; 2002 Nov; 29(11):2559-70. PubMed ID: 12462723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of scatter-to-primary ratio, grid performance and normalized average glandular dose in mammography by Monte Carlo simulation including interference and energy broadening effects.
    Cunha DM; Tomal A; Poletti ME
    Phys Med Biol; 2010 Aug; 55(15):4335-59. PubMed ID: 20647608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical characteristics of scattered radiation in diagnostic radiology: Monte Carlo simulation studies.
    Chan HP; Doi K
    Med Phys; 1985; 12(2):152-65. PubMed ID: 4000070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.