These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 26405873)

  • 1. The detection of long-range correlations of operation force and sEMG with multifractal detrended fluctuation analysis.
    Li F; Li D; Wang C; Chen S; Lv M; Wang M
    Biomed Mater Eng; 2015; 26 Suppl 1():S1157-68. PubMed ID: 26405873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue estimation using a novel multi-fractal detrended fluctuation analysis-based approach.
    Talebinejad M; Chan AD; Miri A
    J Electromyogr Kinesiol; 2010 Jun; 20(3):433-9. PubMed ID: 19589697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface EMG force modeling with joint angle based calibration.
    Hashemi J; Morin E; Mousavi P; Hashtrudi-Zaad K
    J Electromyogr Kinesiol; 2013 Apr; 23(2):416-24. PubMed ID: 23273763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A frequency and pulse-width co-modulation strategy for transcutaneous neuromuscular electrical stimulation based on sEMG time-domain features.
    Zhou YX; Wang HP; Bao XL; Lü XY; Wang ZG
    J Neural Eng; 2016 Feb; 13(1):016004. PubMed ID: 26644193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A machine learning based method for classification of fractal features of forearm sEMG using Twin Support vector machines.
    Arjunan SP; Kumar DK; Naik GR
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4821-4. PubMed ID: 21097298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractal analysis of surface electromyography signals: a novel power spectrum-based method.
    Talebinejad M; Chan AD; Miri A; Dansereau RM
    J Electromyogr Kinesiol; 2009 Oct; 19(5):840-50. PubMed ID: 18617420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationships of exponents in two-dimensional multifractal detrended fluctuation analysis.
    Zhou Y; Leung Y; Yu ZG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012921. PubMed ID: 23410418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracting effective features of SEMG using continuous wavelet transform.
    Kilby J; Hosseini HG
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1704-7. PubMed ID: 17946475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fractal and twin SVM-based handgrip recognition for healthy subjects and trans-radial amputees using myoelectric signal.
    Arjunan SP; Kumar DK; Jayadeva J
    Biomed Tech (Berl); 2016 Feb; 61(1):87-94. PubMed ID: 26354833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of sEMG in identification of low level muscle activities: features based on ICA and fractal dimension.
    Naik GR; Kumar DK; Arjunan S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():364-7. PubMed ID: 19963459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of surface electromyography recording time interval without muscle fatigue effect for biceps brachii muscle during maximum voluntary contraction.
    Soylu AR; Arpinar-Avsar P
    J Electromyogr Kinesiol; 2010 Aug; 20(4):773-6. PubMed ID: 20211568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-frequency analysis of SEMG--with special consideration to the interelectrode spacing.
    Alemu M; Kumar DK; Bradley A
    IEEE Trans Neural Syst Rehabil Eng; 2003 Dec; 11(4):341-5. PubMed ID: 14960108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of handgrip force using frequency-band technique during fatiguing muscle contraction.
    Soo Y; Sugi M; Yokoi H; Arai T; Nishino M; Kato R; Nakamura T; Ota J
    J Electromyogr Kinesiol; 2010 Oct; 20(5):888-95. PubMed ID: 19837604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Elbow Flexion Force Estimation Through a Muscle Twitch Model and sEMG in a Fatigue Condition.
    Na Y; Kim J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1431-1439. PubMed ID: 28113944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractal feature of sEMG from Flexor digitorum superficialis muscle correlated with levels of contraction during low-level finger flexions.
    Arjunan SP; Kumar DK; Naik GR
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4614-7. PubMed ID: 21096230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the sEMG/force relationship using HD-sEMG technique and data fusion: A simulation study.
    Al Harrach M; Carriou V; Boudaoud S; Laforet J; Marin F
    Comput Biol Med; 2017 Apr; 83():34-47. PubMed ID: 28219032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force Modelling of Upper Limb Biomechanics Using Ensemble Fast Orthogonal Search on High-Density Electromyography.
    Johns G; Morin E; Hashtrudi-Zaad K
    IEEE Trans Neural Syst Rehabil Eng; 2016 Oct; 24(10):1041-1050. PubMed ID: 26761839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time pinch force estimation by surface electromyography using an artificial neural network.
    Choi C; Kwon S; Park W; Lee HD; Kim J
    Med Eng Phys; 2010 Jun; 32(5):429-36. PubMed ID: 20430679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Research on surface electromyographic signal decomposition based on the level of contraction force].
    Deng H; Chen X; Yao B; Lou Z; Yang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Dec; 29(6):1046-51, 1077. PubMed ID: 23469528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An adaptive algorithm for the determination of the onset and offset of muscle contraction by EMG signal processing.
    Xu Q; Quan Y; Yang L; He J
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):65-73. PubMed ID: 23193462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.